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Abstract

Code formatters bring many benefits to software development such as

enforcing a consistent coding style across teams, more effective code

reviews and enabling automated large-scale refactoring. This thesis

addresses how to develop a code formatter for the Scala programming

language. We present scalafmt, an opinionated Scala code formatter that

captures many popular Scala idioms and coding styles. This thesis

introduces language-agnostic algorithms and tooling that scalafmt uses

to implement advanced features such as line wrapping and configurable

vertical alignment. We have validated that these techniques work well in

practice. Scalafmt has been installed over 6.500 times in only 3 months

and several popular open-source libraries have chosen to reformat their

codebases with scalafmt.

Útdráttur

Kóðasniðlar (e. code formatters) eru nytsamleg tól í

hugbúnaðarþróun. Helstu kostir kóðasniðla eru meðal annars að geta

sjálfvirkt framfylgt samræmdum kóðastíl, gera kóðaumsagnir skilvirkari

og gera kleift að endurskipleggja stór forritasöfn. Þetta verkefni fjallar um

að þróa kóðasniðil fyrir Scala forritunarmálið. Við kynnum scalafmt,

kóðasniðil sem fangar marga vinsæla Scala kóðastíla og vinsæl

forritunartiltæki. Þetta verkefni kynnir reiknirit og gagnagrindur til að

útfæra háþróaða eiginleika eins og að brjóta langar forritunarskipanir á

einni línu niður í margar línur og raða tóka af svipuðu tagi frá mörgum

línum þannig að tókarnir liggi á sama lóðrétta dálki. Aðferðir sem kynntar

eru í þessu verkefni hafa sannað sig í verki. Scalafmt hefur verið halað

niður yfir 6.500 sinnum á eingöngu þremur mánuðum og fjöldi af

vinsælum opnum forritasöfnum hafa kosið að sníða kóðann sinn með

scalafmt.
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1 Introduction

Without code formatters, software developers are responsible for manipulating

all syntactic trivia in their programs. What is syntactic trivia? Consider the Scala

code snippets in listings 1 and 2.

Listing 1: Unformatted code

1 object MyApp extends App {
2 Initialize(context, config(port(
3 "port.http"),
4 settings + custom))
5 }
6

7

Listing 2: Formatted code

1 object MyApp extends App {
2 Initialize(
3 context,
4 config(port("port.http"),
5 settings + custom))
6 }
7

Both snippets represent the same application. The only difference lies in where

the programmer has chosen to break lines. Characters such as spaces and line

breaks that do not affect the execution of the program are syntactic trivia.

Although syntactic trivia has no meaning for the execution of the program,

listing 2 is arguably easier to understand, maintain and extend for the software

developer. A code formatter is a tool that automatically converts a program

such as in listing 1 into a readable and maintainable program such as in

listing 2. Code formatting brings several benefits to software development.

Code formatting enables automated large-scale refactoring. Google used

ClangFormat[19], a C++ code formatter, in the process of migrating a large

legacy C++98 codebase to use the modern C++11 standard[45]. The

automatically refactored code was formatted with ClangFormat to ensure that

it adhered to Google’s strict coding style[12]. Similar migrations can be

expected in the near future for the Scala community once new dialects, such as

Dotty[34], gain popularity.

Code formatting is valuable in collaborative coding environments. The Scala.js

project[37] has over 40 contributors and the Scala.js coding style[8] — which

each Scala.js contributor is expected to know by heart — is defined at a

whopping 2.600 word count. Each contributed patch is manually verified

against the coding style by the project maintainers. This adds a burden on both

contributors and maintainers. Several prominent Scala community members

have raised this issue. ENSIME[10] is a popular Scala interaction mode for text

editors such as Vim and Emacs. Sam Halliday, an ENSIME maintainer, says “I

don’t have time to talk about formatting in code reviews. I want the machine to
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do it so I can focus on the design.”[14]. Akka[1] is a popular concurrent and

distributed programming library for Scala with over 300 contributors. Viktor

Klang, a maintainer of Akka, suggests a better alternative: “Code style should

not be enforced by review, but by automate rewriting. Evolve the style using PRs

against the rewriting config.”.[20].

With scalafmt, we hope to relieve Scala developers from the burden of

manipulating syntactic trivia so they can instead direct their full attention to

writing correct, maintainable and fast code.

1.1 Research objective

What algorithms and data structures allow us to develop a code formatter for

the Scala programming language with a maximum line length setting,

opinionated setting, vertical alignment and good performance? Those features

are defined as follows:

• Maximum line length setting: a code formatter with a maximum line

length setting ensures that each line in the formatted output contains no

more than a certain number of characters. Many coding styles enforce a

maximum line length to ensure code is readable from different

environments such as small split screens and code review interfaces.

• Opinionated: An opinionated setting is a prerequisite to enforce a

uniform coding style. An opinionated code formatter takes liberty to

disregard line breaks and other formatting decisions in the original

source input to ensure that formatted source files follow the same line

breaking conventions.

• Vertical alignment: vertical alignment is a formatting convention where

redundant whitespace is added before a token to align it on the same

vertical column as similar tokens from other lines. Many Scala coding

styles enforce vertical alignment to enhance code readability.

• Performance: Users expect code formatters to run fast. In the most

demanding settings, a code formatter needs to be able to format

thousands of lines of code in at most a few hundred milliseconds.
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1.2 Contributions

The main contributions presented in this thesis are the following:

• language-agnostic algorithms and data structures to implement line

wrapping with a maximum line length setting — in our opinion, the most

challenging part of developing a code formatter — as well as configurable

vertical alignment. This work is presented in section 3.

• methods to optimize and test the developed algorithms. This work is

presented in section 4.

• practical validation of developed algorithms and methods with the

scalafmt code formatter. The empirical results of this validation are

presented in section 5.
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2 Background

This chapter explains the necessary background to understand Scala and code

formatting. More specifically, we motivate why Scala presents an interesting

challenge for code formatters. We go into details on Scala’s rich syntax and

popular idioms that introduced unique challenges to the design of scalafmt. We

follow up with a history on code formatters that have been developed over the

last 70 years. We will see that although code formatters have a long history, a

new tradition of optimization based formatters – which scalafmt proudly joins

– started only recently in 2013.

2.1 Scala the programming language

Scala[29] is a general purpose programming language that was first released in

2004. Scala combines features from object-oriented and functional

programming paradigms, allowing maximum code reuse and extensibility.

Scala can run on multiple platforms. Most commonly, Scala programs compile

to bytecode and run on the JVM. With the releases of Scala.js[8], JavaScript has

recently become a popular target platform for Scala developers. Even more

recently, the announcement of Scala Native[39] shows that LLVM may become

yet another viable target platform for Scala developers.

Scala is a popular programming language. The Scala Center — a not-for-profit

organization focused on Scala open-source and education — estimates that

more than half a million developers use Scala[28]. Large organizations such as

Goldman Sachs, Twitter, IBM and Verizon rely on Scala code to run business

critical applications. The 2015 Stack Overflow Developer Survey shows that

Scala is the 6th most loved technology and 4th best paying technology to work

with[41]. The popularity of Apache Spark[48], a cluster computing framework

for large-scale data processing, has made Scala a language of choice for many

developers and scientists working in big data and machine learning.

Scala is a programming language with rich syntax and many idioms. The

following chapters discuss in detail several prominent syntactic features and

idioms of Scala. Most importantly, we highlight coding patterns that encourage

developers to write a single large statement over of multiple small statements.
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Listing 3: Higher order functions

1 def twice(f: Int => Int) = (x: Int) => f(f(x))
2 twice(_ + 2)(6) // 10

Listing 4: Higher order functions expanded

1 def twice(f: Function[Int, Int]) =
2 new Function[Int, Int]() { def apply(x: Int) = f.apply(f.apply(x)) }
3 twice(new Function[Int, Int]() { def apply(x: Int) = x + 2 }).apply(6) // 10

2.1.1 Higher order functions

Higher order functions (HOFs) are a common concept in functional

programming languages as well as mathematics. HOFs are functions that can

take other functions as arguments and return functions as values. Languages

that provide a convenient syntax to manipulate HOFs are said to make

functions first-class citizens.

Functions are first-class citizens in Scala. Consider listing 3. The method twice
takes an argument f, which is a function from an integer to an integer. The

method returns a new function that will apply f twice to an integer argument.

This small example takes advantage of several syntactic conveniences provided

by Scala. For example, in line 2 the argument _ + 3 creates a new

Function[Int, Int] instance. The function call f(x) is in fact sugar for the

method call f.apply(x) on the Function[Int, Int] instance. Listing 4

shows an equivalent program to listing 3, without using syntactic

conveniences. Observe that the body of twice was expressed as a single

statement in line 1 of listing 3 but as two independent statements in listing 4.

2.1.2 Term blocks

Scala allows term blocks to appear anywhere in a Scala code. A term block is a

sequence of statements wrapped by curly braces {}. Listing 5 shows two

examples of term blocks. Variables bounds inside a term block do not escape

the block. Therefore, the variable y can be assigned both inside the first block

as well as to the return value of the function call. The lightweight syntax to

create term blocks in Scala make them a popular feature among Scala

developers. Observe that without term blocks, the second argument to
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Listing 5: Term blocks

1 val x = { // { opens a new blockk
2 val y = 1
3 y + 2
4 }
5 val y = function(argument1, {
6 val argument2 = 2
7 argument2 + 3
8 }, argument3)

Listing 6: SBT project definition

1 lazy val core = project
2 .settings(allSettings)
3 .settings(
4 moduleName := "scalafmt-core",
5 libraryDependencies ++= Seq(
6 "com.lihaoyi" %% "sourcecode" % "0.1.1",
7 "org.scalameta" %% "scalameta" % Deps.scalameta))

function would be defined externally. Instead, the second argument is defined

inline making the entire function call significantly bigger.

2.1.3 SBT

SBT[36] is an interactive build tool used by many Scala projects. SBT

configuration files are written in *.sbt or *.scala files using Scala syntax and

semantics. Although SBT configuration files use plain Scala, they typically use

coding patterns which are different from traditional Scala programs. Listing 6 is

an example project definition in SBT. Observe that the project is defined as a

single statement and makes extensive use of symbolic infix operators. Due to

the nature of build configurations, argument lists can becomes unwieldy long

and a single project statement can span over dozens or even hundreds of lines

of code.

2.2 scala.meta

Scala.meta[4] is a metaprogramming toolkit for Scala. Before scala.meta, most

metaprogramming facilities relied on Scala compiler internals. This had several

severe limitations such as too-eager desugaring resulting in loss of syntactic
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Listing 7: Parsing different Scala dialects with scala.meta

1 > import scala.meta._
2 > dialects.Sbt0137(
3 """lazy val root = project.dependsOn(core)
4 lazy val core = project""").parse[Source] // OK
5 > dialects.Sbt0136(
6 """lazy val root = project.dependsOn(core)
7 lazy val core = project""").parse[Source] // Parse error: missing newline
8 > dialects.Scala211(
9 """lazy val root = project""").parse[Source] // Parse error: no class/...

details from the original source code. Scala.meta was designed to overcome

these limitations and offer a more robust platform to develop

metaprogramming tools for Scala. Several key features of scala.meta have made

it an invaluable companion in the development of scalafmt. Most notably

among these features are dialect agnostic syntax trees, syntax tree serialization,

high-fidelity parsing and algebraically typed tokens.

Scala.meta provides facilities to tokenize and parse a variety of different Scala

dialects. One such dialect is SBT configuration files, discussed in section 2.1.3.

SBT adds custom support for top-level statements in *.sbt files, a disallowed

feature in regular Scala programs. Then, to format SBT files requires either

depending on the SBT parser or reimplementing its parsing logic. To add insult

to injury, top-level statements must be separated by a blank line if you use SBT

version 0.13.6 or lower; a restriction that was lifted in SBT 0.13.7. Listing 7

shows how scala.meta dialects makes it trivial to accommodate this zoo of

nuances. The result after parsing is a dialect agnostic scala.meta tree structure.

The structure of scala.meta trees can be serialized to a string to strip off all

insignificant syntactic details. Listing 8 shows how to serialize the tree structure

of a simple hello world application. For example, observe that the comment

has been stripped away. As we discuss in section 4, this feature was

instrumental in testing scalafmt.

Node types in scala.meta trees preserve absolute fidelity with the original

source file. This means we can obtain all syntactic details from a tree node such

as whether a for comprehension uses parentheses or curly braces as delimiters,

whitespace positions, comments and other syntactic trivia. The Scala compiler

is infamous for desugaring for-comprehensions into

map/withFilter/flatMap applications during the parse phase. This made it

impossible to implement metaprogramming tasks such as code formatting.
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Listing 8: Serializing scala.meta trees

1 > import scala.meta._
2 > """ object Main extends App { self =>
3 println(s"Hello $self!") // This is a comment
4 }""".parse[Source].get.structure // comment
5 res0: String = """
6 Source(Seq(Defn.Object(Nil, Term.Name("Main"), Template(Nil, Seq(Ctor.Ref.Name("App

")), Term.Param(Nil, Term.Name("self"), None, None), Some(Seq(Term.Apply(Term.
Name("println"), Seq(Term.Interpolate(Term.Name("s"), Seq(Lit("Hello "), Lit
("!")), Seq(Term.Name("self")))))))))))

7 """

High-fidelity parsing in scala.meta has been essential for scalafmt because we

can’t lose critical syntactic details such as whether for-comprehensions are

used over flatMap method calls.

Tokens in scala.meta are strongly typed. Traditional object-oriented libraries

treat tokens as a single type with multiple methods such as isComma/isFor
which returns true if a token instance is a comma or a for keyword. However,

scala.meta leverages algebraic data types in Scala to represent each different

kind of token as a separate type. This feature plays nicely with exhaustivity

checking in the Scala pattern matcher and enabled design pattern for the

Router explained in section 3.3.1.

2.3 Code formatting

Code formatting and pretty printing1 has a long tradition. In this chapter, we

look at a variety of tools and algorithms that have been developed over the last

70 years.

2.3.1 Natural language

The science of displaying aesthetically pleasing text dates back as early as

1956[16]. The first efforts involved inserting carriage returns in natural

language text. Until that time, writers had been responsible for manually

1 This thesis uses the term code formatting over pretty printing. According to Hughes[17], pretty

printing is a subset of code formatting where the former is only concerned with presenting data

structures while the latter is concerned with the harder problem of formatting existing source

code — the main topic of this thesis.
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providing carriage returns in their documents before sending them off for

printing. The motivation behind automating this process was to “save

operating labor and reduce human error”. Once type-setting became more

commonplace, the methods for breaking lines of text got more sophisticated.

Knuth and Plass developed in 1981 a famous line breaking algorithm[22] for

LATEX, a popular typesetting program among scientific circles. LATEX is the

program that was used to generate this very document. The line breaking

problem was the same as in the 60s: how to optimally break a paragraph of text

into lines so that the right margin is minimized. The primitive approach is to

greedily fit as many words on a line as possible. However, such an approach can

produce embarrassingly bad output in the worst case. Knuth’s algorithm uses

dynamic programming to find an optimal layout with regards to a fit function

that penalizes empty space on the right margin of the paragraph. This

algorithm remains a textbook example of an application of dynamic

programming[9, 21].

2.3.2 ALGOL 60

Scowen[38] developed SOAP in 1971, a code formatter for the programming

language ALGOL 60. The main motivation for SOAP was to make it “easier for a

programmer to examine and follow a program” as well as to maintain a

consistent coding style. This motivation is still relevant in modern software

development. SOAP did provide a maximum line length limit. However, SOAP

would fail execution if the provided line length turned out to be too small. With

hardware from 1971, SOAP could format 600 lines of code per minute.

2.3.3 LISP

In 1973, Goldstein[11] explored code formatting algorithms for LISP[25]

programs. LISP is a family of programming languages and is famous for its

parenthesized prefix notation. Listing 9 shows a program in LISP to calculate

factorial numbers. The simple syntax and extensive use of parentheses as

delimiters makes LISP programs an excellent ground to study code formatters.

Goldstein presented a recursive re-predictor algorithm in his paper. The

recursive re-predictor algorithm runs a top-down traversal on the abstract

syntax tree of a LISP program. While visiting each node, the algorithm tries to

first obtain a linear-format, i.e. fit remaining body of that node on a single line,
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Listing 9: A LISP program

1 (defun factorial (n)
2 (if (= n 0) 1
3 (* n (factorial (- n 1)))))

with a fallback to standard-format, i.e. each child of that node is put on a

separate line aligned by the first child. Goldstein observes that this algorithm is

practical despite the fact that its running time is exponential in the worst case.

Bill Gosper used the re-predictor algorithm to implement GRINDEF[2], one of

the first code formatters for LISP.

Goldstein’s contributions extend beyond formatting algorithms. Firstly, in his

paper he studies how to format comments. Secondly, he presents several

different formatting layouts which can be configured by the users. Both are

relevant concerns for modern code formatters.

2.3.4 Language agnostic

Derek C. Oppen pioneered the work on language agnostic code formatting in

1980[32]. A language agnostic formatting algorithm can be used for a variety of

programming languages instead of being tied to a single language. Users

provide a preprocessor to integrate a particular programming language with

the algorithm. Oppen’s algorithm runs in O(n) time and uses O(m) memory for

an input program of length n and maximum column width m. Besides

impressive performance results, Oppen claims that a key feature of his

algorithm is its streaming nature; the algorithm prints formatted lines as soon

as they are read from the input instead of waiting until the entire input stream

has been read. This feature is typically not a concern for modern code

formatters. Moreover, Oppen’s algorithm shares a worrying limitation with

SOAP: it cannot handle the case when the line length is insufficiently large.

Mark van der Brand presented a library in 1996 that generates a formatter given

a context-free grammar[43]. Beyond the usual motivations for developing code

formatters, Brand mentions that formatters “relieve documentation writers

from typesetting programs by hand”. This focus on documentation is reflected

by the fact that the generated formatter could produce both ASCII formatted

code as well at LATEX markup. Since comments are typically not included in a

syntax tree, the presented algorithm has an elaborate scheme to infer the
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location of comments in the produced output. Like Oppen’s algorithm, this

library requires the user to plug in a preprocessor to integrate a particular

programming language into the Brand’s library. Unlike Oppen’s algorithm,

Brand does not consider line length limits in his algorithm.

John Hughes extended on Oppen’s work on language agnostic formatting in

terms of functional programming techniques[17]. Hughes presented a design

of a pretty-printing library that leverages combinators with algebraic properties

to express formatting layouts. Hughes claims that such a formal approach was

invaluable when designing the pretty-printing library, which has seen wide use,

including in the Glasgow Haskell compiler. Wadler[44] and Chitil[42] extend on

Hughes’s and Oppen’s work in term of performance and programming

techniques. However, this branch of work has been limited to printing data

structures and not how to format existing source code.

2.3.5 Go

gofmt[13] is a code formatter for the Go programming language, developed at

Google. gofmt was released in the early days of Go in 2009 and is noteworthy

for its heavy adoption by the Go programming community. Official Go

documentation[5] claims that almost all written Go code — at Google and

elsewhere — is formatted with gofmt. Besides formatting, gofmt is used to

automatically migrate Go codebases from legacy versions to new

source-incompatible releases. However, gofmt supports neither a maximum

line length setting nor an opinionated setting. Line breaks are preserved in the

user’s input. For example, listing 10 shows a Go program that uses the same

layout as the “unformatted” code from listing 1 in the introduction.

Listing 10: Gofmt example input/output

1 package main
2

3 func main() int {
4 Initialize(config, port(get(
5 "port.http"),
6 settings+custom))
7 }

The output of running gofmt through listing 10 is identical to the input. This

un-opinionated behavior may be considered desirable by many software

developers. However, in this thesis, we are concerned with maximum line

lengths and opinionated settings.
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2.3.6 Scala

Scalariform[35] was released in 2010 and is a widely used code formatter for

Scala. Like gofmt, Scalariform does an excellent job of tidying common

formatting errors. Moreover, Scalariform supports a variety of configuration

options. Scalariform is also impressively fast, it can format large files with over

4.000 lines of code in under 250 milliseconds on a modern laptop. However,

Scalariform shares the same limitations with gofmt: it lacks a line length and

opinionated setting.

Firstly, the line length setting is necessary to implement many popular coding

styles in the Scala community. For example, the Spark[46] and Scala.js[8]

coding styles have 100 character and 80 character column limits, respectively.

As we see in other code formatters, it is non-trivial to add a line length setting

and doing so would require a significant redesign of Scalariform.

Secondly, the lack of an opinionated setting makes it impossible to enforce

certain coding styles. For example, the Scala.js coding style enforces

bin-packing, where arguments should be arranged compactly up to the column

length limit. Listings 11 and 12 shows an example of bin packing enabled and

disabled, respectively.

Listing 11: Bin-packing

1 // Column 35 |
2 class Foo(val x: Int, val y: Int,
3 val z: Int)
4

Listing 12: No bin-packing

1 // Column 35 |
2 class Foo(val x: Int,
3 val y: Int,
4 val z: Int)

Since Scalariform preserves the line breaking decisions from the input,

Scalariform is unable to convert formatted code like in listing 12 to the code in

listing 11.

2.3.7 C-family

Daniel Jasper triggered a new trend in optimization based coded formatters

with the release of ClangFormat[18] in 2013. ClangFormat is developed at

Google and can format an impressive number of languages: C, C++, Java,

JavaScript, Objective-C and Protobuf code. Figure 1 shows the architecture of

ClangFormat.

18



Figure 1: ClangFormat architecture, source [19]

The main components are the structural parser and the layouter.

ClangFormat employs a structural parser to split source code into a sequence of

unwrapped-lines. An unwrapped line is a statement that should fit on a single

line if given sufficient line length. A key feature of unwrapped lines is that they

should not influence other unwrapped lines. The parser is lenient and parses

even syntactically invalid code. The parsed unwrapped lines are passed onto

the layouter.

The ClangFormat layouter uses a novel approach to implement line wrapping.

Each line break is assigned a penalty according to several rules such as nesting

and token type. At each token, the layouter can choose to continue on the same

line or break the line. This forms an acyclic weighted directed graph with

non-whitespace tokens representing vertices and splits (e.g., space, no space or

line break) representing edges. The first token of an unwrapped line is the root

of the graph and the last token is the sink. The layouter uses Dijkstra’s[7]

shortest path algorithm to find the layout that has the lowest penalty. To obtain

good performance, the layouter uses several domain specific optimizations to

minimize the search space.

Despite supporting several programming languages, ClangFormat does not

leverage the language agnostic formatting techniques described section 2.3.4.

Support for each language has been added as ad-hoc extensions to the

ClangFormat parser and layouter. ClangFormat supports a variety of

configuration options, including 6 out-of-the-box styles based on coding styles

from Google, LLVM and other well-known organizations.
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Listing 13: Unformatted C++ code

1 int main(int argc,char const*argv[]) { Defn.Object(Nil, "ClangFormat", Term.Name("
State"), Foo.Bar( Template(Nil, Seq( Ctor.Ref.Name("ClangLogger")), Term.Param(
Nil, Name.Anonymous(), None, None)) ), Term.Name("clang-format") ); }

Listing 14: ClangFormat formatted C++ code

1 int main(int argc, char const *argv[]) {
2 Defn.Object(Nil, "ClangFormat", Term.Name("State"),
3 Foo.Bar(Template(Nil, Seq(Ctor.Ref.Name("ClangLogger")),
4 Term.Param(Nil, Name.Anonymous(), None, None))),
5 Term.Name("clang-format"));
6 }

Finally, ClangFormat is opinionated. ClangFormat produces well-formatted

output for even the most egregiously formatted input. Listing 13 shows an

offensively formatted C++ code snippet. Listing 14 shows the same snippet after

being formatted with ClangFormat. Observe that ClangFormat does not respect

the (lack of) line breaking decisions in listing 13. This feature makes it possible

to ensure that all code follows the same style guide, regardless of author.

2.3.8 Dart

Dartfmt[26] was released in 2014 and follows the optimization based trend

initiated by ClangFormat. Dartfmt is a code formatter for the Dart

programming language, developed at Google. Like ClangFormat, dartfmt has a

line length setting and is opinionated. Bob Nystrom, the author of dartfmt,

discusses the design of dartfmt in a blog post[27]. In his post, Nystrom argues

that the design of a code formatters is significantly complicated by a column

limit setting. The line wrapping algorithm in dartfmt employs a best-first

search[33], a minor variant of the shortest path search in ClangFormat. As with

ClangFormat, a range of domain-specific optimizations were required to make

the search scale for real-world code. Listing 15 shows an example of such an

optimization: avoid dead ends. Line 4. in the snippet exceeds the 35 character

column limit. A plain best-first search would fruitlessly explore a lot of line

breaking options inside the argument list of firstCall. However, firstCall
already fits on a line and there is no need to explore line breaks inside its

argument list. The dartfmt optimized search is able to eliminate such dead ends

and quickly figure out to break before the "long argument string" literal.
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Listing 15: Avoid dead ends

1 // Column 35 |
2 function(
3 firstCall(a, b, c, d, e),
4 secondCall("long argument string"));

2.3.9 R

The most recent addition to the optimization based formatting trend is

rfmt[47], a code formatter for the statistical programming environment R. The

formatter was released in 2016 – after the background work on this thesis

started – and like its forerunners is also developed at Google. rfmt makes an

interesting contribution in that it combines the algebraic combinator approach

from Hughes[17] and the optimization based approach from LATEX and

ClangFormat.

The algebraic combinator approach employed by rfmt makes it easy to express

a variety of formatting layouts. rfmt uses 6 layout combinators or blocks as they

are called in the report. The blocks are the following:

• TextBl ock(t xt ): unbroken string literal.

• Li neBl ock(b1,b2, . . . ,bn): horizontal combination of blocks.

• St ackBl ock(b1,b2, . . . ,bn): vertical combination of blocks.

• C hoi ceBl ock(b1,b2, . . . ,bn): selection of a best block.

• IndentBlock(n, l ): indent block b by n spaces.

• W r apBl ock(b1,b2, . . . ,bn): Fit as many blocks on each line as possible,

break when the column limit is exceeded and align by the first character

in b1.

We’ll use an example to demonstrate how these relatively few combinators

allow an impressive amount of flexibility. Listings 16 and 17 shows two different

layouts to format an argument list.
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Listing 16: Line block

1 // Column 35 |
2 function(argument1, argument2,
3 argument3, argument4,
4 argument5, argument6)
5

Listing 17: Stack block

1 // Column 35 |
2 function(
3 argument1, argument2, argument3,
4 argument4, argument5, argument6
5 )

In this case, we prefer the line block from listing 16 since it requires fewer lines.

However, our preference changes if the function name is longer as is shown in

listings 18 and 19.

Listing 18: Line block

1 // Column 35 |
2 functionNameIsLonger(argument1,
3 argument2,
4 argument3,
5 argument4,
6 argument5,
7 argument6)
8

Listing 19: Stack block

1 // Column 35 |
2 functionNameIsLonger(
3 argument1, argument2, argument3,
4 argument4, argument5, argument6
5 )
6

7

8

Here, we clearly prefer the stack block in listing 19. Listing 20 shows how we use

the 6 fundamental blocks in the rfmt combinator algebra to express the choice

between these two formatting layouts.

Listing 20: Formatting layout for argu-

ment lists

ChoiceBlock(LineBlock(LineBlock(
TextBlock(f), TextBlock("("))),

WrapBlock(a1,
... , am),

TextBlock(")"),
StackBlock(LineBlock(

TextBlock(f), TextBlock("("))),
IndentBlock(4,

WrapBlock(a1, ... , am)),
TextBlock(")"))

.

The

variable f denotes the function name and a1, ...am denotes the argument list.

Observe that listing 20 does not express how to find the optimal layout.

To find an optimal layout, rfmt employs dynamic programming with a novel

indexing scheme. First, it is possible enumerate all layout combinations like the

re-predictor algorithm does in section 2.3.3. This leads to exponential growth

which turns out to be a problem for some cases. Dynamic programming

alleviates exponential growth by allowing us to reuse partial solutions. Instead
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of re-calculating the layout cost at each (starting column, block) pair, we store

the result in an associative array keyed by the starting column. However, it

turns out that this can still be inefficient in terms of memory and speed2. To

overcome this limitation, Yelland – the rfmt author – presents an indexing

scheme that makes it possible to extrapolate the layout cost even for missing

keys. We refer to the original paper[47] for details. This novel approach enables

rfmt to format even the most pathologically nested code in near instant time.

2 In fact, ClangFormat started with a similar approach, as explained in this[6] video recording,

but then switched to Dijkstra’s shortest path algorithm.
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object ScalafmtExample {
  function(arg1, arg2(arg3(
    "String literal"),
    arg4 + arg5))
}

object ScalafmtExample {
  function(
      arg1,
      arg2(arg3("String literal"),
           arg4 + arg5))
}

scala.meta 
parser

LineWrapper
+

Router

object - ScalafmtExample

ScalafmtExample - {

{ - function

arg5 - )

) - )

) - }

…

FormatTokens

Space

Space

Newline(indent 2)

NoSplit

NoSplit

Newline(indent -2)

…FormatWriter

Splits

…

…

Figure 2: Scalafmt architecture

3 Algorithms

This chapter describes how scalafmt formats Scala code. We will see that

scalafmt’s design is inspired by ClangFormat and dartfmt. However, our design

has been heavily adapted to take advantage of many Scala programming

idioms.

3.1 Design

Figure 2 shows a broad architectural overview of scalafmt. First, scalafmt parses

a source file using scala.meta. Next, we feed a sequence of FormatToken data

types into a LineWrapper. The LineWrapper uses a Router to construct a

weighted directed graph and run a best-first search to find an optimal

formatting layout for the whole file. Finally, the LineWrapper feeds a sequence

of Split data types into the FormatWriter, which constructs a new

reformatted source file. The following sections explain these data types and

abstractions in detail.

3.2 Data structures

This section presents the data structures used by scalafmt.
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3.2.1 FormatToken

A FormatToken is a pair of two non-whitespace tokens. Listing 21 shows the

definition of the FormatToken data type.

Listing 21: FormatToken definition

1 case class FormatToken(left: Token, right: Token, between: Vector[Whitespace])

As shown in the architecture overview in figure 2, each token, except the first

and last tokens, appear twice in the sequence of FormatTokens: once as the

left member and once as the right member. In a nutshell, the job of the

Router is to convert each FormatToken into a Decision

3.2.2 Decision

A Decision is a pair of a FormatToken and a sequence of Splits. Listing 22

shows the definition of Decision.

Listing 22: Decision definition

1 case class Decision(formatToken: FormatToken, splits: Seq[Split])

The splits member represents the possible splits that the LineWrapper can

choose for formatToken.

3.2.3 Policy

A Policy is an enforced formatting layout over a region. Listing 23 shows the

definition of Policy.

Listing 23: Policy definition

1 case class Policy(f: PartialFunction[Decision, Decision], expire: Token)

A Policy is a partial function that should be applied to future Decisions up

until the expire token. Policies easily compose using the Scala standard library

orElse and andThen methods on PartialFunction3. Policies enable a high-level

way to express arbitrary formatting layouts over a region of code. For example,

3 Fun fact. Careful eyes will observe that Policy is in fact a monoid with the empty partial func-

tion as identity and function composition as associative operator.
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listing 24 show a Policy to enforce that all tokens fit on a single line up to an

expire token.

Listing 24: Single line Policy

1 def singleLinePolicy(expire: Token) =
2 Policy({
3 case Decision(formatToken, splits) =>
4 Decision(formatToken, splits.filterNot(_.modification.isNewline))
5 }, expire: Token)

Observe that we could easily extend the method to handle corner cases such as

comments and excluding regions. A few general purpose policies such as the

single line Policy make up the majority of all policies in the actual scalafmt

implementation.

3.2.4 Indent

An Indent describes indentation over a region of code. Listing 25 shows the

definition of Indent along with the algebraic data type Length.

Listing 25: Indent definition

1 sealed abstract class Length
2 case class Num(n: Int) extends Length
3 case object StateColumn extends Length
4

5 case class Indent[T <: Length](length: T, expire: Token, inclusive: Boolean)

Length can either be Num(n) where n represents a concrete number of spaces

to indent by or StateColumn which is a placeholder for the number of spaces

required to vertically align by the current column. Indent is type

parameterized by Length so that, at some point, we can replace StateColumn
placeholders with Nums to obtain a concrete number. For example, given a

scala.meta tree expr, the definition Indent(Num(2), expr.tokens.last,
inclusive=true) increases the indentation level by 2 spaces up to and

including the last token of expr. The inclusive member is set to false when

the indentation should expire before the expire token, for example in a block

wrapped by curly braces, since the closing curly brace should not be indented

by 2 spaces. The StateColumn placeholder is required to allow memoization of

Splits, which is critical for performance reasons.
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3.2.5 Split

A Split represents a (possibly empty) whitespace character to be inserted

between two non-whitespace tokens. Listing 26 shows the rather intricate

definition of the Split data type4.

Listing 26: Split definition

1 case class Split(modification: Modification,
2 cost: Int,
3 policy: Policy,
4 optimalAt: Option[OptimalToken],
5 indents: Vector[Indent[Length]])(
6 implicit val line: sourcecode.Line)

The Split data type went through several generations of design before reaching

its current structure. Each member serves an important role. The most

important member of the Split type is the modification. A modification must

be one of NoSplit, Space and Newline. The cost member represents the

penalty for choosing this split. The optimalToken member enables an

optimization explained in section 3.4.3. The line member allows a powerful

debugging technique explained in section 3.3.1. The policy and indents
members are explained in sections 3.2.3 and 3.2.4, respectively.

3.2.6 State

A State represents a partial formatting solution inside the best-first search.

Listing 27 shows the definition of the State class and companion object.

Listing 27: State definition

1 case class State(splits: Vector[Split],
2 totalCost: Int,
3 policies: Vector[Policy],
4 indents: Vector[Indent[Num]],
5 column: Int,
6 formatOff: Boolean) extends Ordered[State] {
7

8 def compare(that: State): Int
9 }

10

11 object State {
12 def nextState(currentState: State, formatToken: FormatToken, split: Split): State
13 }

4 For clarity reasons, a few less important members have been removed from the actual Split

definition.
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Figure 3: Example graph produced by Router

Observe the similarity of State and Split. A State contains various summaries

calculated from the splits vector. The summaries are necessary for

performance reasons in the best-first search. Observe that the indents
member is type parameterized by Num, meaning it can only cannot contain

StateColumn indents. The column member represents how many characters

have been consumed since the last newline. The State class extends the

Ordered trait to allow for efficient polling from a priority queue. The compare
method orders States firstly by their totalCost member, secondly by

splits.length (i.e., how many FormatTokens have been formatted) and

finally breaking ties by the indentation. The method State.nextState
calculates the necessary summaries create a new state from currentState and

a new split. The method is implemented as efficiently as possible since the

method is on a hot path in the best-first search.

3.3 LineWrapper

The LineWrapper is responsible for turning FormatTokens into Splits. To

accomplish this, the LineWrapper employs a Router and a best-first search.

3.3.1 Router

The Router’s role is to produce a Decision given a FormatToken. Figure 3

shows all possible formatting layout for the small input val x = y + z. In this

figure, the Router has chosen to open up multiple branches at = and + and only

one branch for the remaining tokens. This is no easy task since a FormatToken
can be any pair of two tokens. How do we go about implementing a Router?

The Router is implemented as one large pattern match on a FormatToken.
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Listing 28 shows how we can pattern match on a FormatToken and produce

Splits.

Listing 28: Pattern matching on FormatToken

1 formatToken match {
2 case FormatToken(_: Keyword, _) => Seq(Split(Space, 0))
3 case FormatToken(_, _: ‘=‘) => Seq(Split(Space, 0))
4 case FormatToken(_: ‘=‘, _) => Seq(Split(Space, 0)
5 Split(Newline, 1))
6 // ...
7 }

The pattern _: ‘=‘ matches a scala.meta token of type ‘=‘. The underscore _
ignores the underlying value. Keyword is a super-class of all scala.meta

keyword token types. Now, a good observer will notice that this pattern match

can quickly grow unwieldy long once you account for all of Scala’s rich syntax.

How does this solution scale? Also, once the match grows bigger how can we

know from which case each Split origins? It turns out that Scala’s pattern

matching and scala.meta’s algebraically typed tokens are able to help us.

The Scala compiler can statically detect unreachable code. If we add a case that

is already covered higher up in the pattern match, the Scala compiler issues a

warning. For example, listing 29 shows how the compiler issues a warning.

Listing 29: Unreachable code

1 formatToken match {
2 case FormatToken(_, _: Keyword) => Seq(Split(Space, 0))
3 // ...
4 case FormatToken(_, _: ‘else‘) => Seq(Newline(, 0)) // Unreachable code!
5 }

Here, we accidentally match on a FormatToken with an else keyword on the

right which will never match because we have a broader match on a Keyword

higher up. In this small example, the bug may seem obvious but once the

Router grows bigger the bugs become harder to manually catch. However, this

still leaves us with the second question of finding the origin of each Split.

Scala macros[3] and implicits[30] give us a helping hand.

The source file line number of where a Split is instantiated is automatically

attached with each Split. Remember in listing 26 that the Split case class had

an implicit member of type sourcecode.Line. Sourcecode[15] is a Scala

library to extract source code metadata from your programs. The library

leverages Scala macros and implicits to unobtrusively surface useful

information such as line number of call sites. Listing 30 shows how this works.

29



Listing 30: Extracting line number from call site

1 Split(Space, 0) /* expands into */ Split(Space, 0)(sourcecode.Line(1))

When a sourcecode.Line is not passed explicitly as an argument to the Split
constructor, the Scala compiler will trigger its implicit search to fill the missing

argument. The sourcecode.Line companion contains an implicit macro that

generates a Line instance from an extracted line number. Take a moment to

appreciate how these two advanced features of the Scala programming

language enable a very powerful debugging technique. The scalafmt Router
implementation contains 88 cases and spans over 1.000 lines of code. The

ability to trace the origin of each Split to a line number in the Router source

file has been indispensable in the development of the Router.

3.3.2 Best-first search

The Decisions from the Router produce a directed weighted graph, as

demonstrated in figure 3. To find the optimal formatting layout, our challenge

is to find the cheapest path from the first token to the last token. The best-first

search algorithm[33] is an excellent fit for the task.

Best-first search is an algorithm to efficiently traverse a directed weighted

graph. The objective is reach the final token and once we reach there, we

terminate the search because we’re guaranteed no other solution is better.

Algorithm 1 shows a first attempt5 to adapt a best-first search algorithm to the

data structures and terminologies introduced so far. In the best case, the

search always chooses the cheapest splits and the algorithm runs in linear time.

Observe that the Router is responsible for providing well-behaved splits so that

we never hit on the error condition after the while loop. Excellent, does that

mean the search is complete? Absolutely not, this implementation contains

several serious performance issues.

Algorithm 1 is exponential in the worst case. For example, listing 31 shows a

tiny input that triggers the search to explore over 8 million states.

5 We make heavy use of mutation since graph search algorithms typically don’t lend themselves

well to functional programming principles.

30



Algorithm 1: Scalafmt best-first search, first approach

1 /** @returns Splits that produce and optimal formatting layout */
2 def bestFirstSearch(formatTokens: List[FormatTokens]): List[Split] = {
3 val Q = mutable.PriorityQueue(State.init(formatTokens.head))
4 while (Q.nonEmpty) {
5 val currentState = Q.pop
6 if (currentState.formatToken == formatTokens.last) {
7 return currentState.splits // reached the final state.
8 } else {
9 val splits = Router.getSplits(currentState.formatToken)

10 splits.foreach { split =>
11 Q += State.nextState(currentState, split)
12 }
13 }
14 }
15 // Error: No formatting solution found.
16 ???
17 }

Listing 31: Exponential running time

1 // Column 60 |
2 a + b + c + d + e + f + g + h + i + j + k + l +
3 m + n + o + p + q + r + s + t + v + w + y +
4 // This comment exceeds column limit, no matter what path is chosen.
5 z

Even if we could visit 1 state per microsecond6 the search will take almost 1

second to complete. This is unacceptable performance to format only 2 lines of

code. Of course, we could special-case long comments, but that would only

provide us a temporary solution. Instead, like with ClangFormat and dartfmt,

we apply several domain specific optimizations. In the following section, we

discuss the optimizations that have shown to work well for scalafmt.

3.4 Optimizations

This section explains the most important domain-specific optimizations that

were required to get good performance for scalafmt. We will see that some

optimizations are rather ad-hoc and require creative workarounds.

6 Benchmarks reveal the best-first search visits on average one state per 10 microseconds
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3.4.1 dequeueOnNewStatements

Once the search reaches the beginning of a new statement, empty the priority

queue. Observe that the formatting layout for each statement is independent

from the formatting layout of the previous statement. Consider listing 32.

Listing 32: Two independent statements

1 // Column 60 |
2 statement1(argument1, argument2, argument3, argument5, argument6)
3 statement2(argument1, argument2, argument3, argument5, argument6)

Both statements exceed the column limit, which means that the search must

backtrack to some extent. However, once the search reaches statement2 we

have already found an optimal formatting layout for statement1. When we

start backtracking in statement2, there is no need to explore alternative

formatting layouts for statement1. Instead, we can safely empty the search

queue once we reach the statement2 token.

The dequeueOnNewStatements optimization is implemented by extending

algorithm 1 with an if statement. Algorithm 2 shows a rough sketch of how this

is done. With an empty queue, we ensure the search backtracks only as far is

Algorithm 2: dequeueOnNewStatements optimization

1 // ...
2 val statementStarts: Set[Token]
3 while (Q.nonEmpty) {
4 val currentState = Q.pop
5 if (statementStarts.contains(currentState.formatToken.left)) {
6 Q.dequeueAll // currentState is optimal at this point, empty search queue
7 }
8 // ...
9 }

needed. The statementStarts variable contains all tokens that begin a new

statement. To collect those tokens, we traverse the syntax tree of the input

source file and select the first tokens of each statement of a block, each case in a

partial function, enumerator in a for comprehension and so forth. The actual

implementation is quite elaborate and is left out of this thesis for clarity

reasons. Unfortunately, our optimization has one small problem.

Algorithm 2 may dequeue too eagerly inside nested scopes, leading the search

to hit the error condition. Listing 33 shows an example where this happens.
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Listing 33: Overeager dequeueOnNewStatements

1 // Column 50 |
2 function1(argument1, { case ‘argument2‘ => 11 }, argument3 // forced newline
3 argument4)

Remember that each case of a partial function starts a new statement. The

dequeueOnNewStatements optimization will dequeue the queue on the first

state that reaches the case token. In this example, the first state to reach the

case token will have a strict Policy that disallows newlines up until the closing

parenthesis. However, we must insert a newline after the comment. This causes

the search to terminate too early and reach the error condition. By inspecting

where this problem occurred, we came up with a simple rule to identify regions

where the dequeueOnNewStatements optimization should be disabled. The

simple rule is to never run dequeueOnNewStatements inside a pair of

parentheses. In section 4, we discuss techniques we used to be confident that

this rule indeed works as intended. In the following section (3.4.2) we explain

the recurseOnBlocks optimization, which allows us to reenable

dequeueOnNewStatements for selected regions inside parentheses.

3.4.2 recurseOnBlocks

If the dequeueOnNewStatements optimization is disabled and we start a new

block delimited by curly braces, recursively run the best-first search inside the

block. The intuition here is that by recursively running the best-first search, we

keep the priority queue small at each layer of recursion. This allows us to run

aggressive optimizations such as dequeueOnNewStatements.

The recurseOnBlocks optimization enables scalafmt to handle idiomatic

Scala code where large bodies of higher order functions and blocks are passed

around as arguments. Remember from section 2.1 that Scala makes it

syntactically convenient to pass higher order functions around. Listing 34

shows an example where this happens and we trigger the recurseOnBlocks
optimization.

Listing 34: recurseOnBlocks example

1 function(argument1, { higherOrderFunctionArgument =>
2 statement1
3 // ...
4 statementN
5 })
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Listing 35: OptimalToken definition

1 case class OptimalToken(token: Token, killOnFail: Boolean = false)

The dequeueOnNewStatements optimization is disabled inside argument list.

The priority queue grows out bounds because the higher order function can

have an arbitrary number of statements.

To implement the recurseOnBlocks optimization, we add an extension to

algorithm 1. Algorithm 3 shows a rough sketch of how recurseOnBlocks is

implemented. We change the signature to accept a starting State and token

Algorithm 3: recurseOnBlocks optimization

1 def bestFirstSearch(start: State, stop: Token): List[Split] = {
2 val Q = mutable.PriorityQueue(start)
3 while (Q.nonEmpty) {
4 val currentState = Q.pop
5 if (currentState.formatToken.left == stop) {
6 return currentState
7 } else if (currentState.formatToken != start.formatToken &&
8 currentState.formatToken.left.isInstanceOf[‘{‘]) {
9 bestFirstSearch(currentState, closingCurly(currentState.formatToken.left))

10 }
11 // ...
12 }
13 }

where we stop the search. Observe that we guard against infinite recursion by

not making a recursive call on start.formatToken. With recurseOnBlocks
and dequeueOnNewStatements, we have solved most problems caused by

independent statements affecting the formatting layouts of each other. Next,

we leverage recursion again to help the search queue stay small.

3.4.3 OptimalToken

An OptimalToken is a hint from a Split to the best-first search that enables

the search to early eliminate competing Splits. Recall from listing 26 that a

Split has an optimalToken member. Listing 35 shows the definition of

OptimalToken. When the best-first search encounters a Split with a defined

OptimalToken, the best-first search makes an attempt to reach that token with

a budget of 0 cost. If successful, the search can eliminate the competing Splits.
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Listing 36: OptimalToken example

1 // Column 50 |
2 Database(
3 UserObject(name1, age1),
4 UserObject(name2, age2),
5 // ...
6 UserObject(nameN, ageN) // comment will always exceed column limit
7 )

If unsuccessful and the killOnFail member is true, the best-first search

eliminates the Split. Otherwise, the best-first search continues as usual.

By eliminating competing branches, we drastically minimize the search space.

Listing 36 shows an example where the OptimalToken optimization can be

applied. Scalafmt supports 4 different ways to format call-site function

applications. This means that there will be 4N number of open branches when

the search reaches UserObject number N . To overcome this issue, we define

an OptimalToken at the closing parenthesis. The best-first search successfully

fits the argument list of each UserObject on a single line, and eliminates the 3

other competing branches. This makes the search run in linear time as opposed

to exponential.

To implement the OptimalToken optimization, we add an extension to

algorithm 3. Algorithm 4 sketches how the extension works. The

bestFirstSearch method has a new maxCost parameter, which is the highest

cost that a new splits can have. Next, if a Split has defined an OptimalToken
we make an attempt to format up to that token. If successful, we update the

optimalFound variable to eliminate other Splits from being added to the

queue. If unsuccessful and killOnFail is true, we eliminate the Split that

defined the OptimalToken. A straightforward extension to this algorithm

would be to add a maxCost member to the OptimalToken definition from

listing 35. However, this has not yet been necessary for scalafmt.

3.4.4 pruneSlowStates

The pruneSlowStates is a optimization that eliminates states that progress

slowly. A state progresses slowly if it visits a token later than other states. The

insight is that if two equally expensive states visit the same token, the first state

to visits that token typically produces a better formatting layout.
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Algorithm 4: OptimalToken optimization

1 def bestFirstSearch(start: State, stop: Token, maxCost: Int): List[Split] = {
2 // while (...) { ...
3 val splits = Router.getSplits(currentState.formatToken)
4 var optimalFound = false
5 splits.withFilter(_.cost < maxCost).foreach { split =>
6 val nextState = State.nextState(currentState, split)
7 split.optimalToken match {
8 case Some(OptimalToken(expire, killOnFail)) =>
9 val nextNextState = bestFirstSearch(nextState, expire, maxCost = 0)

10 if (nextNextState.expire == expire) {
11 optimalFound = true
12 Q += nextNextState
13 } else if (!killOnFail) {
14 Q += nextState
15 }
16 case _ if !optimalFound =>
17 Q += nextState
18 }
19 }
20 // ...
21 // }
22 }

By eliminating slow states, we obtain a better formatting output in addition to

minimizing the search space. Listing 37 shows two formatting solutions that

the Router has labelled as equally expensive. However, the fast solution is

explored first by the best-first search and, hence, we call it faster.

Listing 37: Slow states

1 // Column 30 |
2

3 // Fast state
4 a + b + c + d + e + f + g +
5 h + i + j
6 // slow state
7 a + b + c +
8 d + e + f + g + h + i + j

The pruneSlowStates ensures that fast solutions are prioritized over slow

solutions. Of course, the Router could have assigned different costs to the line

break after g + and c +. However, our experience was that such as solution

would introduce unnecessary complexity in the design of the Router. Instead,

the pruneSlowStates can eliminate slow states transparently to the Router.

The pruneSlowStates is implemented as a extension to algorithm 4.
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Algorithm 5 shows a rough sketch of how the extension works.

Algorithm 5: pruneSlowStates optimization

1 // ...
2 val fastStates: mutable.Map[FormatToken, State]
3 while (Q.nonEmpty) {
4 val currentState = Q.pop
5 if (fastStates.get(currentState.formatToken)
6 .exists(_.cost <= currentState.state) {
7 // do nothing, eliminate currentState because it’s slow.
8 } else {
9 if (!fastStates.contains(currentState.formatToken)) {

10 // currentState is the fastest state to reach this token.
11 fastStates.update(currentState.formatToken, currentState)
12 }
13 // continue with algorithm
14 }
15 }

Observe that no special annotations are required from Splits. This property of

the pruneSlowStates optimization made it a simple extension to algorithm 4.

3.4.5 escapeInPathologicalCases

Alas, despite our best efforts to keep the search space small, some inputs can

still trigger exponential running times. The escapeInPathologicalCases
optimization is our last resort to handle such challenging inputs. How do we

detect that the search is in trouble?

We detect the search space is growing out of bounds by tallying the number of

visits per token. If we visit the same token N times, we can estimate the current

branching factor to be around log2(N ). In scalafmt, we tune N to be 256 so that

the best-first search can split into two or more paths for up to 8 tokens. When a

token has been visited more than 256 times, we trigger the

escapeInPathologicalCases optimization. In the following paragraphs, we

present two alternative fallback strategies: leave unformatted and best-effort.

The simplest and most obvious fallback strategy is to leave the pathologically

nested code unformatted. This can be implemented by backtracking to the first

token of the current statement and then reproduce the formatting input up to

the last token of that statement. This method is guaranteed to run linearly to

the size of the input. The responsibility is left to the software developer to a

manually format her code, removing all the benefits of code formatting.

However, in some cases the software developer may prefer the code formatter
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to produce some formatted output instead of nothing.

The best-effort fallback strategy applies heuristics to give a decent but

suboptimal formatting output. When a token is visited for the 256th time, we

select two candidate states from the search queue and eliminate all other

states. The first candidate is the state that has reached furthest into the token

stream that is not bound a prohibitive single line policy. A prohibitive single

line Policy is a Policy that eliminates newline Splits. The Router must

annotate which Splits are prohibitive. The second candidate is the current

state — the slow state that visited the token for the 256th time. The intuition is

that the first candidate has good formatting output so far but for is stuck on a

challenging token for some reason. The second candidate maybe paid a hefty

penalty early on causing it to move slowly but maybe the early penalty will yield

a better output in the end. Algorithm 6 shows an example of how the best-effort

strategy can be implemented as an extension to algorithm 1. The isSafe

Algorithm 6: best-effort fallback strategy

1 var fastestState: State
2 val visits: mutable.Map[FormatToken, Int].withDefaultValue(0)
3 while (Q.nonEmpty) {
4 val currentState = Q.pop
5 visits.update(currentState.formatToken, 1 + visits(currentState.formatToken))
6 if (currentState.length > fastestState.length && currentState.isSafe) {
7 fastestState = currentState
8 }
9 if (visits(currentState.formatToken) == MAX_VISITS_PER_TOKEN) {

10 Q.dequeueAll
11 Q += fastestState
12 Q += currentState
13 visits.clear()
14 } else {
15 // continue with algorithm
16 }
17 }

method on State returns true if the state contains prohibitive policies, derived

from annotated metadata in Splits from the Router. Observe that this

algorithm will reapply the best-effort fallback until the search reaches the final

token. In scalafmt, we bound how many times this can happen and fallback to

the safe unformatted strategy as a last final resort.

The unformatted and best-effort fallback strategies offer different trade-offs.

The unformatted strategy works well in a scenario where a software developer

is available to manually fix formatting errors. The best-effort strategy works
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well on computer generated code where even a tiny bit of formatting improves

code readability. Unfortunately, we struggled to guarantee idempotency using

the best-effort strategy. This limitation renders the best-effort strategy useless

in environments where code formatters are used to enforce a consistent coding

style across a codebase. The best-effort fallback strategy will, thus, be disabled

by default in the next release of scalafmt.

3.5 FormatWriter

Recall from figure 2, the FormatWriter receives splits from the best-first search

and produces the final output presented to the user. In addition to reifying

Splits, the FormatWriter runs three post-processing steps: docstring

formatting, stripMargin alignment and vertical alignment.

3.5.1 Docstring formatting

Docstrings are used by software developers to document a specific part of code.

Like in Java, docstrings in Scala start with the /** pragma and end with */.

However, unlike in Java, the Scala community is split on whether to align by the

first or the second asterisk for new lines in docstrings. The official Scala Style

Guide[40] dictates that new lines should align by the second asterisk while the

Java tradition is to align by the first asterisk. The Scala.js[8] and Spark[46] style

guides follow the Java convention. To accommodate all needs, scalafmt allows

the user to choose either style. To enforce that the asterisks are aligned

according to the user’s preferences, the FormatWriter rewrites docstring tokens.

This is implemented with simple regular expressions and standard library

method String.replaceAll.

3.5.2 stripMargin alignment

The Scala standard library adds a stripMargin extension method on strings.

The method helps Scala developers write multiline interpolated and regular

string literals. Listing 38 shows an example usage of the stripMargin method.
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Listing 38: stripMargin example

1 object StripMarginExample {
2 """Multiline string are delimited by triple quotes in Scala.
3 |You can write as many lines as you want.""".stripMargin
4 }

After calling the method, the whitespace indentation and | character on line 3

are conveniently removed. However, the hard-fought indentation on the pipe

can easily be lost when the string is moved up or down a scope during

refactoring. Scalafmt can automatically fix this issue. In the FormatWriter,

scalafmt rewrites string literals to automatically align the | characters with the

opening triple quotes """. This setting is disabled by default since scalafmt

requires semantic information to confidently determine if the stripMargin
invocation calls the standard library method or a user-defined method.

3.5.3 Vertical alignment

It turns out that vertical alignment is incredibly popular in the Scala

programming community. Vertical alignment is a formatting convention where

redundant spaces are inserted before a token to put it on the same vertical

column as related tokens from other lines. Listing 39 shows an example of

vertical alignment.

Listing 39: Vertical alignment example

1 object VerticalAlignment {
2 x match {
3 // Align by => and -> and //
4 case 1 => 1 -> 2 // first
5 case 11 => 11 -> 22 // second
6

7 // Blank lines separate alignment blocks.
8 case ignoreMe => 111 -> 222
9 }

10

11 def name = column[String]("name")
12 def status = column[Int]("status")
13 val x = 1
14 val xx = 22
15

16 libraryDependencies ++= Seq(
17 "org.scala-lang" % "scala-compiler" % scalaVersion.value,
18 "com.lihaoyi" %% "sourcecode" % "0.1.1"
19 )
20 }

Observe that if we add a new library dependency that has a long name in the
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first column, we must add additional spaces after "org.scala-lang" and

"com.lihaoyi" to preserve the vertical alignment. Many software developers

speak against vertical alignment for this reason, as well as several other reasons.

Nevertheless, the lack of vertical alignment in the initial release of scalafmt was

a hindrance for user-adoption. Configurable vertical alignment was added to

the 0.2 release of scalafmt.

Vertical alignment is implemented in the FormatWriter as an extension to the

reification of Splits. Instead of reifying a Space into a single space literal, the

FormatWriter builds a tokenAligns: Map[Split, Int] which specifies the

number of additional spaces to add for each reified Space. Algorithm 7 shows a

simplification of how the actual algorithm7 constructs the tokenAligns map.

The running time of this algorithm is linear to the total number of tokens in the

input source file. In a nutshell, the algorithm builds blocks of lines that can be

vertically aligned. Blocks are separated by blank lines or mismatching

candidates in subsequent lines. As demonstrated in listing 39, key features of

this algorithm include that users can configure arbitrary symbols to align by

and lines can contain multiple columns of vertically aligned tokens. This

algorithm has two main limitations. Firstly, all lines in a block must have an

equal number of matching columns. Secondly, the algorithm does not infer

vertical alignment forcing the user to explicitly configure which tokens should

align. The first limitation can be addressed by extending the implementation of

the allColumnsMatch method. The second limitation can be addressed by

treating all tokens as candidates (i.e., remove the isCandidate filter) and

extend allColumnsMatch to include tokens that are aligned in the original

source.

3.5.4 Conclusion

This section introduced the data structures and algorithms that scalafmt uses

format Scala code. Similar to dartfmt and ClangFormat, scalafmt models line

wrapping like a graph search problem. Non-whitespace tokens represent nodes

and each potential split forms a weighted edge to the next token. The edge with

the lowest associated cost represents the best formatting output and the edge

with the highest cost represents the least favorable formatting output. Scalafmt

uses best-first search to find the best formatting output (i.e., the cheapest path

from the first token in the input to the last token in the input). However,

7 The actual implementation is 130 lines of code, including helper methods. See

https://git.io/voIG4
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Algorithm 7: Vertical alignment, simplified algorithm

1 case class FormatLocation(formatToken: FormatToken, split: Split, state: State)
2 /** Returns true if location is eligible for vertical alignment */
3 def isCandidate(location: FormatLocation): Boolean
4 /** Returns true if all vertical alignment candidates in a and b match */
5 def allColumnsMatch(a: Array[FormatLocation], b: Array[FormatLocation]): Boolean
6 /** Returns map where the keys are (0 to block.length) and values are the
7 corresponding column index where all candidates should align */
8 def getMaxColumns(block: Vector[Array[FormatLocation]]): Map[Int, Int]
9

10 def getAlignTokens(
11 locations: Array[FormatLocation],
12 alignConfiguration: Map[String, Regex]): Map[Split, Int] = {
13 val finalResult = Map.newBuilder[Split, Int]
14 val lines: Array[Array[FormatLocation]] = getLines(locations)
15 var block = Vector.empty[Array[FormatLocation]]
16 for (formatLocations <- lines) {
17 val candidates: Array[FormatLocation] = formatLocations.filter(isCandidate)
18 if (block.isEmpty) { // Starting a new block.
19 if (candidates.nonEmpty) block = block :+ candidates
20 } else {
21 if (columnsMatch(block.last, candidates)) {
22 block = block :+ candidates
23 } else { // release alignment
24 val maxColumns = getMaxColumns(block)
25 for (line <- block) {
26 for ((tokenToAlign, columnIndex) <- line.zipWithIndex) {
27 finalResult += (tokenToAlign.split,
28 maxColumns(columnIndex) - tokenToAlign.state.column)
29 }
30 }
31 }
32 }
33 }
34 }

42



scalafmts implementation deviates quickly from there by introducing the Split,

Policy and Router abstractions. The motivation for coming up with our own

abstractions was to make scalafmt approachable for Scala developers to

maintain and extend. For example, the use of partial functions in the Policy

data type follows a unique Scala idiom that translates poorly to Dart or C++.

Likewise, we believe that translating dartfmts concept of Rules — which relies

heavily on mutation — would come at the price of less idiomatic Scala code.

Given the extensive use of higher order functions and blocks in Scala, we

struggled to find a robust way to break a source files into a sequence of

unwrapped lines like ClangFormat does. Nevertheless, these abstractions are

different means to the same end. We leave it to the judgment of the reader to

assess which concepts are more powerful or intuitive to understand.

43



Figure 4: Example heatmap with 5.121 visisted states

4 Tooling

This chapter describes the tools that we developed while designing an

implementing algorithms for scalafmt. These tools were indispensable in giving

us confidence that our algorithms worked as intended.

4.1 Heatmaps

Section 3.4 introduces several extensions to algorithm 1 that were required to

get good performance for scalafmt. In general, the extensions involved

eliminating search states. To identify code patterns that triggered excessive

search growth, we used heatmaps.

Heatmaps are a visualization that displays which code regions are most

frequently visited in the best-first search. Figure 4 shows an example heatmap.

The intensity of the red color indicates how often a particular token was visited.

A token highlighted by the lightest shade of red was visited twice while a token

highlighted by the darkest shade of red was visited over 256 times. This figure

demonstrates several of the optimizations discussed in section 3.4. Firstly,

thanks to the dequeueOnNewStatements optimization, the background is plain

white up to the second Seq. The second Seq gets visited twice, once when

there’s a space after the = and once when there’s a newline. Secondly, due to the

OptimalToken optimization, when the search gets into trouble it backtracks to

the tuple (0, 0) instead of the Seq[((Int, Int), Matrix)] type signature.

Finally, because of the strategically placed comment at the end that exceeds the

column limit, the search space grows out of bounds on the fourth argument

triggering the escapeInPathologicalCases best-effort fallback. Without

heatmaps, it would be a much greater challenge to get these insights. However,

these heatmaps gave us limited insights in how our optimizations affected the
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Figure 5: Example diff heatmap

search space in the best-first search.

We developed an extension to heatmaps that allows us to visually compare the

difference in search space between two versions of scalafmt. Figure 5 shows an

example of such a report, which we call a diff heatmap. The green background

indicates that the new version of scalafmt makes fewer visits to those regions.

Observe that the > operator has a background with a light shade of red. This

means that the operator was visisted more often in the new scalafmt version. A

price well worth paying considering the overall shrink in search space. To

produce diff heatmaps, we first persist statistics from two different heatmaps to

a database. Then, we generate the diff heatmap by fetching the two reports and

calculating the difference in visits per token. If the difference is negative for a

particular token — meaning we visited that token fewer times — the

background is highlighted green, otherwise red. Diff heatmaps were useful to

detect performance regressions when we added or removed optimizations.

4.2 Property based testing

Property based tests played a vital role in the development of scalafmt and

gave us confidence that the algorithms from section 3 behave well against the

real world input. Typically, property based tests run again randomly generated

input. However, generating random source files which might be

unrepresentative for human written code. Instead, we chose to collect a large

sample of 1.2 million lines of code from open source Scala projects available

online. The sample was compressed into a 23mb zip file8. Our test suite would

download the sample and test three properties: can-format, AST integrity and

8See https://github.com/olafurpg/scalafmt/releases/download/v0.1.4/repos.
tar.gz
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idempotency.

4.2.1 Can-format

The can-format property simply says that if the Scala compiler’s parser is able

to parse the source input file, then scalafmt should be able to format the source

file. Although this may seem like a trivial property, it was by far the most

effective property at finding bugs in scalafmt. Most commonly, comments in

unexpected placed caused the best-first search to not reach the last token in the

input. An overly strict Policy was usually the culprit of such bugs, which was

easy to fix thanks to our tracing techniques described in section 3.3.1.

4.2.2 AST integrity

The AST integrity property says that the abstract syntax tree of the formatted

source file should be identical to the abstract syntax tree of the original input.

Recall from section 2.2 that scala.meta trees can be serialized into strings. We

leverage this feature to test AST integrity. Algorithm 8 shows the code needed to

test AST integrity. This property catched several critical bugs. For example, in

Algorithm 8: AST integrity property

1 import scala.meta._
2 forAll { (code: String) =>
3 val beforeAST = code.parse[Source].show[Structure]
4 val afterAST = Scalafmt.format(code).parse[Source].show[Structure]
5 beforeAST == afterAST
6 }

one case, scalafmt inserted a newline after the keyword return, breaking the

semantics of the original source code. Moreover, this property highlighted the

danger of enabling stripMargin alignment. Since the stripMargin modified

the contents of regular and interpolated string literals, the AST of the formatted

output changed. Knowing that scalafmt preserves the AST of the input code

gives us great confidence that scalafmt will not introduce bugs in our users

code.
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4.2.3 Idempotency

The idempotency property says that formatting a source file twice should

produce the same output as formatting the same file once. This property is

critical for scalafmt to be used as part of any continuous integration setup. It is

not at all obvious that the algorithms in section 3 fulfill the idempotency

property. Our experience reveals that it is in fact very easy to accidentally

introduce non-idempotent formatting rules in the Router. We did not test for

idempotency until the 0.2.3 release, after users reported non-idempotent

formatting behavior in scalafmt. Yet, even after we started testing against

idempotency in our comprehensive test-suite, we continued to receive issues

with non-idempotent formatting. This time it appears that the

escapeInPathologicalCases strategy from section 3.4.5 was the culprit. For

the next release, we plan to disable escapeInPathologicalCases by default in

favor use its safer alternative. It turns out that 1.2 million lines of code is not a

large enough sample to catch all property bugs.
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5 Evaluation

Code formatting is inherently a subjective topic. This introduces a challenge

when evaluating a code formatter. This chapter presents measurements that we

believe show the success of scalafmt. We do not measure how well software

developers perceive scalafmt formatted code. Instead, we will focus on

performance benchmarks and user adoption.

5.1 Performance benchmarks

This chapter measures scalafmt’s raw formatting performance. We first

describe our test methodology and then present results from two different

benchmarks: macro and micro.

5.1.1 Setup

The benchmarks are run on a Macbook Pro (Retina, 15-inch, Mid 2014) laptop

with a quad-core 2.5 GHz Intel Core i7 processor, 256 KB L2 cache per core and

6 MB shared L3 cache. The laptop has 16 GB 1600 MHz DDR3 memory. The

operating system is OS X El Capitan 10.11.5. We run the benchmarks from the

scalafmt commit id aff5e794 compiled against Scala 2.11.7, running on JVM

version 8, update 91. For accurate measurements, all benchmarks are run with

the OpenJDK Java Microbenchmark Harness (JMH)[31]. JMH takes into

account a variety of parameters that affect performance on the JVM. The

sbt-jmh[24] plugin makes it easy to integrate JMH with a Scala project.

To repeat the benchmarks, execute the run-benchmarks.sh script in the root

directory of the scalafmt project.

5.1.2 Macro benchmark

The macro benchmark is designed to give us an insight on how scalafmt

performs in a continuous integration setup. For example, it is common to

assert before code review that all source files are properly formatted. For this

benchmark we format the entire Scala.js codebase. The codebase contains 915

source files and over 106 thousand lines of code, excluding blank lines and

comments. For accurate measurements, we run five iterations of the macro
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Benchmark Cores Score Error Units

Parallel.scalafmt 4 14.616 ± 0.632 s/op

Parallel.scalariform 4 2.810 ± 0.641 s/op

Ratio 5.20

Synchronous.scalafmt 1 35.654 ± 0.459 s/op

Synchronous.scalariform 1 5.951 ± 0.135 s/op

Ratio 5.99

Table 1: Results from macro benchmark.

benchmark. We run two version of the macro benchmark: one parallel using all

cores on the machine and one synchronous using only a single core. In each

run, we compare the running time with Scalariform.

Table 1 shows the results from the macro benchmark. Scalafmt is almost 6x

slower than Scalariform. Why is the performance gap so big? Is this gap

acceptable for continuous integration setups?

We believe two factors contribute to the fact that scalafmt is 6x slower than

Scalariform. Firstly, preliminary results from profiling scalafmt reveal that

micro-optimizing scalafmt could yield great performance improvements. For

example, over 30% of the formatting time is dedicated to a pre-processing step

— unrelated to the best-first search — that could be accomplished with

minimal overhead during parsing inside scala.meta. Other experiments

indicate that scalafmt may speed up yet another 30% by upgrading to the latest

release of scala.meta9. Secondly, scalafmt’s formatting algorithm is more

complex. Scalafmt may try thousands of different formatting layouts to find an

optimal formatting output. In contrast, Scalariform’s formatting algorithm is

linear.

We believe the current performance is usable in a continuous integration setup,

but would benefit greatly from performance improvements. The current

performance is usable because a typical diff in a code review touches only a few

source files, and definitely far from the 106 thousand lines of code that we

format in this benchmark. On smaller diffs, the gap between Scalariform and

scalafmt is less pronounced. However, it is worth considering that continuous

integration setups may not have access to the same powerful hardware as we

9 Scala.meta recently went through several non-source-compatible upgrades. This has made it

difficult for scalafmt to keep up with the latest release.
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25th Median Mean 75th 90th 95th 99th Max

16 46 106 113 248 400 945 11723

Table 2: Percentiles of lines of code per file in micro benchmark.

do in this benchmarks. We believe that a 2-3x performance improvement for

scalafmt is possible and would go far to greatly improve the experience for

users with less powerful hardware and projects with large amounts of code.

5.1.3 Micro benchmark

The micro benchmark is designed to give us an insight on how scalafmt

performs in an interactive software developer workflow. For example, many

Scala developers configure SBT to reformat source files on every compilation.

Before we run the benchmark, we must find out how many lines of code a

typical source file contains.

We performed a small study to learn the size of a typical source file. We

collected a sample of 3.2 million lines of code from 33 open source Scala

projects. Table 2 shows the distribution of file sizes in our sample. Observe that

over 90 percent of all files are rather small, or under 250 lines of code. Only one

percent of files contain more than 1.000 lines of code. Still, we assume

developers spend quite a lot of time editing such large files.

Using the results from our small study, we choose to run the micro benchmark

on four files of varying sizes: small (∼ 50 LOC), medium (∼300 LOC), large

(∼1.000 LOC) and extra large (∼4.500 LOC). To minimize error margins, we run

10 warmup iterations followed by 10 measured iterations. As in the macro

benchmark, we compare the running time with Scalariform. The micro

benchmark is single threaded.

Table 3 shows the results from the micro benchmark.
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Benchmark Score Error Units

ExtraLarge.scalafmt 1423.140 ± 103.360 ms/op

ExtraLarge.scalariform 219.820 ± 14.450 ms/op

Ratio 6.50

Large.scalafmt 355.819 ± 17.385 ms/op

Large.scalariform 39.324 ± 3.395 ms/op

Ratio 9.05

Medium.scalafmt 79.616 ± 2.013 ms/op

Medium.scalariform 15.934 ± 0.441 ms/op

Ratio 5.00

Small.scalafmt 6.968 ± 0.104 ms/op

Small.scalariform 1.176 ± 0.025 ms/op

Ratio 5.93

Table 3: Results from micro benchmark.

No surprise, scalafmt is again slower than Scalariform. Is this performance gap

acceptable for interactive software development?

We believe this performance is usable for occasional code formatting, but not

suitable for a workflow that formats on every compilation. Amazon famously

showed that sales decreased by 1 percent for every 100ms increase in page load

time[23]. We believe similar principles apply to scalafmt, every additional

millisecond in the running time hampers user adoption. Still, we believe that

scalafmt’s appealing formatting output, in many ways, makes up for its slow

performance. As we’ll discuss in the following section, our users seem to agree.

5.2 Adoption

Scalafmt has received quite some attention since its release in early March,

three months ago. In this section we present the statistics we believe

demonstrate that scalafmt is — despite its young age — already proving itself

useful for the Scala community. All data points are as of June 9th, 2016.
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Figure 6: Scalafmt installations by

month by channel

Table 4: Download numbers for

scalafmt.

Channel Version Installations

IntelliJ v0.2.5 847

All 3.273

Maven v0.2.5 788

All 2.657

Github v0.2.5 102

All 929

Sum v0.2.5 1.737

All 6.859

5.2.1 Installations

Scalafmt has been installed over 6.500 times. Table 4 shows the installation

numbers for each official distribution channel. IntelliJ is the Jetbrains plugin

repository10. The numbers represent absolute download numbers, not unique

users. Data is not available for how many users built scalafmt from source, so it

is fair to estimate that the actual number of installation is slightly higher.

Observe that v0.2.5 was released 22 days ago, meaning it has been installed 80

times on average per day since its release. Extrapolating from the v0.2.5

installation numbers, we estimate that scalafmt currently has around 1.000

active users.

Figure 6 shows the growth in installations by month. Observe that growth has

doubled with each new month. Github represented proportionally many

installs in the first month but only represents a small fraction of installation in

May. On the other hand, Maven installations quadrupled in May, taking the

lead from the IntelliJ plugin in April. We believe this increase in Maven

installations is caused by projects installing the scalafmt SBT plugin for every

test run in a continuous integration setup.

5.2.2 Other

We present interesting data points from a variety of disparate data sources:

10 See https://plugins.jetbrains.com/plugin/8236?pr=
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Project Customized coding style

Scala Native11 defaultWithAlign base style, 80 character column

limit, Java docstrings.

Scala.js dom12 Scala.js base style: 80 character column limit, vertical

alignment on case arrows, bin packed arguments/pa-

rameters/parent constructors, Java docstrings.

Fetch13 defaultWithAlign base style, 100 character column

limit, Scala docstrings.

psp-std14 Customized vertical alignment, 160 character column

limit, 2 space continuation indent, spaces in import curly

braces, Scala docstrings.

Table 5: Open source libraries that have reformatted their codebase with

scalafmt and their customized settings.

• Several popular open-source libraries have reformatted their codebases

with scalafmt. Table 5 shows an incomplete list of libraries that have so

far taken the jump. Observe that all libraries take advantage of vertical

alignment. Moreover, each library customizes on top of the base default
style. It is worth mentioning that all libraries except Scala.js dom are

relatively new. We believe more mature libraries are slower to adopt such

a new technology.

• The scalafmt code repository has received contributions from 8 external

contributors. Several of these contributions added non-trivial features to

scalafmt, including new configuration flags and extensions to the Router.

• 34 unique users, excluding the author, have opened a total of 138 tickets

on the scalafmt issue tracker.

• The scalafmt Gitter15 instant messaging channel has 47 members. The

channel is used to informally discuss bugs, new features and more.

• The user documentation website16 has been visited 5.422 times with an

average visit duration of 98 seconds.

11 https://github.com/scala-native/scala-native
12 https://github.com/scala-js/scala-js-dom
13 https://github.com/47deg/fetch
14 https://github.com/paulp/psp-std
15See https://gitter.im/olafurpg/scalafmt
16See http://scalafmt.org
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6 Future work

Scalafmt is not free from issues. We identify two main main areas for

improvements. Firstly, how do we more soundly produce an optimal formatting

layout with better performance? Secondly, can we go even further to obtain

orders of magnitude faster performance in an interactive developer workflow.

We experienced a long tail of problems while getting the best-first search to

reach the last token for Scala code that we found in the wild. If the best-first

search cannot reach the last token, scalafmt cannot format the file. Although

the concept of policies does give a lot of flexibility to concisely express different

formatting layouts, our experience is that it can be easy to create overly strict

policies that eliminate all active search states. It is worth to explore more

principal approaches on how to define formatting layouts so that we can

guarantee that the search is sound and successfully completes every time. We

believe rfmts approach of combining the convenience of combinators with

algebraic properties and optimized dynamic programming for excellent

performance opens an interesting venue to solve this problem.

Incremental formatting provides an opportunity to get enormous performance

improvements in an interactive developer workflow. Instead of formatting an

entire source file on every invocation, incremental formatting reuses output

from a previous invocation to only reformat lines that have changed. We

believe that incremental formatting could cut down the formatting time for a

large source file by several orders of magnitude, for example from 2s to 20ms.

This would result in a huge improvement in user experience. Users could

configure their text editors to reformat on every key press, if they so please.
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7 Conclusion

We set out to implement a code formatter for the Scala programming language

that supports several important features: an opinionated setting, a maximum

line length setting, vertical alignment and fast performance. We have presented

data structures and algorithms that enabled us to develop scalafmt, a Scala

code formatter that supports the first three required features and goes far

towards achieving good performance. Benchmarks reveal that scalafmt can

format over 100 thousand lines of code in only 15 seconds. However, scalafmt is

still 6x slower than Scalariform, an alternative Scala code formatter.

Nevertheless, we estimate that scalafmt currently has around 1.000 active users.

This swift user adoption indicates that scalafmt’s features are valuable and that

the current performance is acceptable for many software developers. We

believe there is plenty of room for improvements on making scalafmt go further

and meet the needs of the even the most demanding users.
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