
Directembedding: Concealing the Deep
Embedding of DSLs

Ólafur Páll Geirsson

School of Computer and Communication Sciences

Semester Project

June 2015

Responsible
Prof. Martin Odersky

EPFL / LAMP

Supervisor
Vojin Jovanović
EPFL / LAMP

Abstract

Authors of embedded domain-specific languages (EDSLs) commonly
struggle to find the right balance between the capability and usability
of their DSL. On one hand, deeply embedded DSLs give great power
to the DSL author but have a steep learning curve for end users. On
the other hand, shallowly embedded DSLs are more limiting for the
DSL author but offer a more familiar interface to the end users that
enables them to quickly become productive with the DSL.

This report presents work on Directembedding, a Scala library to
implement a thin user-friendly layer on top of an existing deeply em-
bedded DSL1. The library accomplishes this using annotations and
macros, and requires little to no knowledge of the Scala reflection API.
We used Directembedding to implement slick-direct, a front-end for the
functional relational mapping library Slick. Leveraging Directembed-
ding features, slick-direct is able to support a large feature set of Slick
in under 300 lines of code.

Contents

1 Introduction 3

2 Directembedding 4
2.1 Architecture . 4
2.2 Language virtualization . 5
2.3 Overriding predefined and third-party types 5
2.4 Improved error messages . 6
2.5 Configurable reification . 6

2.5.1 reifyAs . 7
2.5.2 reifyAsInvoked . 7
2.5.3 passThrough . 8
2.5.4 customLifts . 8
2.5.5 liftIgnore . 9

3 Case study: slick-direct 9
3.1 Lifted embedding . 9
3.2 Direct embedding . 12
3.3 Related work . 15

4 Future research 16

5 Conclusion 16
1Note. This work builds on a previous semester project on the Directembedding library

2

1 Introduction

Domain-specific languages (DSLs) provide a simple and high-level way for
programmers to accomplish a domain-specific task. DSLs differ from general
purpose programming languages in the sense that they enable the program-
mers to think at a higher level of abstraction at the price of having restricted
capabilities. One common use case for DSLs is to enable novice programmers
and experts in fields outside of software development to become productive
programmers.

One method to implement DSLs is to embed them inside a host language.
This has the benefit that the DSL can leverage the facilities of the host
language. The downside is that an embedded DSL has less flexibility to give
arbitrary semantics to a given program. An embedded DSL must obey the
host language’s syntax and predefined behavior. EDSLs largely fall into two
categories:

• Shallowly embedded DSLs offer an interface on top of values that are
directly provided by the host language. In Scala, these are values such
as Int and String. The benefit of shallow EDSLs is that they have
a small learning curve for end users. The interface is familiar to pro-
grammers who already have some experience with the host language.
The downside to shallow EDSLs is that they are inconvenient for the
DSL author. The values in the DSL may have predefined behavior by
the host language or third-party libraries. The DSL author must work
around these limitations in order to give domain-specific meaning to
the programs in her DSL.

• Deeply embedded DSLs offer an interface on top of host-language data-
structures, which we refer to as an intermediate representation (IR). In
Scala, this could be a type such as Column[Int] or Column[String] for
a database DSL. The benefit of deep EDSLs is that they are convenient
for the DSL author. The DSL author has full control over the IR, and
can therefore give any meaning to programs which invoke operations
on the IR. Moreover, deeply embedded DSLs have shown promising
results for domain-specific optimizations [11, 10] and multi-target code
generation [1]. The downside to deep EDSLs is that they can have a
steep learning curve for end users. The types in the IR and their behav-
ior may be unfamiliar to the programmers even though they may have
some experience with the host language. In a way, deep EDSLs are not
too different from ordinary libraries in a general purpose programming
language.

There is a clear struggle between DSL users and authors: the users prefer
shallow EDSLs while the authors prefer deep EDSLs. Directembedding aims
to please both parties. The DSL author can conveniently create her deeply

3

embedded DSL and then use Directembedding to provide a shallow EDSL-
like interface for end users. For an in-depth discussion on combining shallow
and deep EDSLs, see Svenningsson and Axelsson (2013) [14].

The main contributions presented in this report are the following:

• Extend previous work on the Directembedding library by adding the
possibility to 1) override behavior of predefined and third party types
2) give arbitrary semantics to many standard Scala features 3) config-
ure the reification of DSL programs. Moreover, much work has been
put into improving the error messages generated by the library. This
work is explained in Section 2.

• Do the first case study on the practical use of the Directembedding
library. In under two weeks, we implemented slick-direct : a front-end for
the Query API in the functional relational mapping library Slick. Slick-
direct is under 300 lines of code and delegates all implementation logic
to the underlying Slick API. Slick-direct supports query operations
such as map, flatMap, filter, and join with greatly simplified type
signatures compared to the lifted embedding in Slick. This work is
covered in Section 3.

Throughout the paper we assume familiarity with the basics of the Scala
Programming Language [8].

2 Directembedding

The architecture of the Directembedding library went through a major over-
haul in this project. The reification has been extended with new annotations
and new capabilities such as language virtualization. The reification is now
highly customizable by the DSL author. The library also aims to provide
useful error messages where possible.

The following sections explain the improvements that have been made
to the Directembedding library in this project. For more details on how
Directembedding works please consult the project’s Github site, linked at
the end of this report.

2.1 Architecture

Figure 1 shows the new architecture of Directembedding. PreProcessing is an
optional pass in the shallow embedding where the DSL author can transform
the program in any way necessary before reification. PreProcessing requires
knowledge of the Scala reflection API. The DSLVirtualization pass performs
the language virtualization explained in Section 2.2. This pass happens in the
shallow embedding. ReificationTransformation is the major component of
Directembedding and lifts the shallow embedding into the deep embedding.

4

PreProcessing

DSLVirtualization

ReificationTransformation

PostProcessing

Figure 1: The Directembedding transformation pipeline.

In this pass, the metadata attached to the shallow embedding is used to
reify the program into the DSL author’s IR. PostProcessing is an optional
pass through the deep embedding where the DSL author can transform the
program in any way necessary before the program is passed back to the user.

The entry point to using Directembedding is now DETransformer. The
design of the DETransformer is inspired by the YYTransformer in Yin-
Yang [6], and uses mixin composition [7] to compose a series of transfor-
mation stages. An example Directembedding DSL is provided the example
package object.

2.2 Language virtualization

Language virtualization is the process of converting standard language fea-
tures into method calls, in order to give them arbitrary semantics. Such
language features include if-then-else statements, loops, and variable assign-
ments. It is not possible to override the semantics of such statements in Scala
without macros.

Directembedding uses the language virtualization provided by the Yin-
Yang [6] framework. This transformation happens in the DSLVirtualization
pass. The DSL author is able to configure which language features to over-
ride through the DslConfig trait. The LanguageVirtualizationSpec shows
43 examples of how to use the language virtualization feature in Directem-
bedding.

2.3 Overriding predefined and third-party types

Directembedding supports the ability to override behavior of predefined and
third-party types. Predefined types are types provided by standard Scala
libraries, such as Int and String. Third-party types can be any types in a
third-party library supported by the DSL.

5

Reification for overriden types works the same way as reification with any
other types. The typeMap argument to DETransformer tells Directembedding
where to to look for reification annotations. If Directembedding does not find
metadata to an invoked symbol, Directembedding will look for annotations
on types in the typeMap. This search on types and finding matching symbols
is currently implemented in a naïve way, and could be improved in future
implementations. TypeOverridingSpec provides 6 examples of how to use
the type overriding feature in Directembedding.

2.4 Improved error messages

Much effort has been put into making error messages produced by Directem-
bedding helpful. These error messages broadly fall into two categories: i) DSL
author and ii) end user error messages.

The error messages aimed at the DSL author are mostly meant to assist
the author detect a DSL misconfiguration. For instance, the configuration is
now provided through a trait type parameter. The trait determines the path
from which all language virtualization and lift methods are implemented. If
the compile method—the receiver of DSL program after PostProcessing—is
missing, Directembedding will fail with a compilation error indicating that
the method is missing. Another example is that if a reification annotation is
used incorrectly, Directembedding will return a compilation error pointing
to the misuse of the annotation. Finally, detailed logging of all the steps of
Directembedding transform can be enabled for debugging purposes.

The error messages aimed at the DSL user are mostly meant to surface
incorrect use of the DSL in a user-friendly way. Most importantly, if the user
invokes a method that is missing a reification annotation, Directembedding
will return a compilation error saying that the method is not supported in
the DSL, pointing to the culprit invocation in the DSL program. Prior to
this project, Directembedding threw a cryptic EmptyIteratorException in
the same situation.

2.5 Configurable reification

Many of the Directembedding features are now configurable by the DSL au-
thor. The DSL author has increased control over how the reification is per-
formed through new reification annotations beyond the original @reifyAs
annotation. Moreover, the DSL author has now fine-grained control over
how literals are lifted into deep IR. For more details on the following con-
figuration options, please refer to the Directembedding example DSLs and
documentation.

6

Listing 1: @reifyAs example

1 // Inside Query trait.
2 @reifyAs(Take)
3 def take(i: Long): Query[T, C] = ???
4 // Shallow query.
5 query {
6 Query.take(1)
7 }
8 // Deep query.
9 Take(Query, lift(1))

Listing 2: @reifyAsInvoked example

1 // Inside Query trait.
2 @reifyAsInvoked
3 def take(i: Long): Query[T, C] = ???
4 // Shallow query.
5 query {
6 Query.take(1)
7 }
8 // Deep query.
9 lift(Query).take(lift(1))

2.5.1 reifyAs

The @reifyAs annotation is useful to move the invocation of a method in
the shallow EDSL into any method in the deep EDSL. This approach is
inspired by related work on finally-tagless, polymorphic embedding [3, 5].
Listing 1 shows an example usage of the @reifyAs annotation. As seen in
the example, the DSL author attaches the deep method as an argument to
the @reifyAs annotation. If the argument is missing, Directembedding will
fail with a compilation error.

2.5.2 reifyAsInvoked

The @reifyAsInvoked annotation is useful to preserve the invocation a front-
end on top an existing deep EDSL. Instead of invoking a static method as
@reifyAs, the @reifyAsInvoked preserves the shallow embedding invocation
order. Listing 2 shows an example usage of the @reifyAsInvoked annota-
tion. The deed query compiles only since the underlying lifted.Query has
a matching take method. The use of @reifyAsInvoked is therefore only
encouraged in cases like slick-direct, where there is a close correspondance
between the shallow EDSL and deep EDSL.

7

Listing 3: @passThrough example

1 // Inside Query trait.
2 @passThrough
3 def take(i: Long): Query[T, C]
4 def missingAnnotation(): Int = 1
5 // Shallow query.
6 query {
7 Query.take(missingAnnotation())
8 }
9 // Deep query.

10 lift(Query).take(missingAnnotation())

2.5.3 passThrough

The @passThrough annotation is useful to preserve values in the shallow
DSL program. By default, any invoked method in a DSL program should be
reified during ReificationTransformation. If a method is missing a reification
annotation, the ReificationTransformation will return with a compilation
error. Methods annotated with @passThrough skip reification in the Reifica-
tionTransformation. Listing 3 shows an example usage of the @passThrough
annotation. The example exhibits a subtle yet important difference between
@passThrough and @reifyAsInvoked, the former will stop the reification at
the invocation point and while the latter will recursively reify the arguments
to the invoked method. A careful observer may notice that the example may
fail to compile, since the argument to the lifted query mustbe a lifted value.
For this reason, the use of @passThrough should only be used with great
care.

2.5.4 customLifts

By default, all literal are lifted through a method with the following signature

1 def lift[T](e: T): Rep[T]

where Rep is the supertype of all elements in the IR. The issue with default
configuration is that it ignores the hierarchy of the IR, all literals will have the
type Rep although they may be lifted into a subtype of Rep. The customLifts
parameter to DETransformer alleviates this issue by giving the DSL author
fine grained control over which types are lifted into which IR types. For
instance, the DSL author can provide a custom lift for values of type Int
and another lift method for values of type String. Directembedding does
not enforce that the return type of a custom lift methods is a subtype of Rep

8

Figure 2: The type hierarchy of slick.lifted.Rep[T] in Slick.

2.5.5 liftIgnore

The liftIgnore configuration parameter allows the DSL author to list which
literals should not be lifted during ReificationTransformation. This can be
useful if certain literals are introduced in the PreProcessing step which should
not be lifted.

3 Case study: slick-direct

Slick [13] is a popular Scala library used to query databases. Slick is recom-
mended by Typesafe as the functional relational mapper for their well known
Play framework. Professional Scala consultancies such as underscore.io offer
public and private training on Slick and underscore.io even recently released
a book about the library2. The hefty prices on the private training indicates
that there is commercial interest in using Slick. The fact that the book is
close to 300 pages may also indicate that the library has a steep learning
curve.

We chose to evaluate Directembedding by implementing a front-end for
Slick for a few reasons. Firstly, Slick is a widely used library in the industry.
Secondly, the lifted embedding API is quite elaborate and makes extensive of
many advanced features of the Scala type system, such as lifted embedding [9].
Thirdly, there exists a lot of related work on direct embedding for Slick.

In this case study, we compare in detail the lifted embedding with our im-
plementation of the direct embedding. Sections 3.1 and 3.2 cover how queries
are created in the lifted embedding and direct embedding, respectively. In
Section 3.3, we look at the related work on direct embedding with Slick.

3.1 Lifted embedding

The lifted embedding is the recommended way to query data with Slick. The
supertype of all members in the lifted embedding is the slick.lifted.Rep[T]
trait. Figure 2 shows the type hierarchy of Rep[T]. To create a query with
the lifted embedding, a Slick user must in one way or another interact with
all subtypes in the hierarchy. The purpose of the lifted embedding API is
to create an abstract syntax tree (AST) of type slick.ast.Node, which is

2http://underscore.io/training/courses/essential-slick/

9

http://underscore.io

Listing 4: Original case classes

1 case class User(id: Int, name: String)
2 case class Car(id: Int, name: String, ownerId: Int)

Listing 5: Table[T] definition

1 class Users(tag: Tag) extends Table[User](tag, "User") {
2

3 def id: Rep[Int] = column[Int]("id")
4 def name: Rep[String] = column[String]("name")
5

6 def * = ProvenShape.proveShapeOf((id, name) <> ((User.apply
_).tupled, User.unapply))

7 }
8

9 class Cars(tag: Tag)
10 extends Table[Car](tag, "Car") {
11

12 def id: Rep[Int] = column[Int]("id", O.PrimaryKey)
13 def name: Rep[String] = column[String]("name")
14 def ownerId: Rep[Int] = column[Int]("ownerId")
15 // Foreign key constraint
16 def ownerIdFk = foreignKey("ownerIdFk", ownerId,

TableQuery[Users])(_.id)
17

18 def * = ProvenShape.proveShapeOf((id, name, ownerId) <>
(Car.tupled, Car.unapply))

19 }

then passed onto the query optimization engine of Slick. In the next few
paragraphs, we will follow an example to see how a query inside the lifted
embedding is created from the point of view of a Slick users. The following
example is made up of simple database of users and cars owned our users and
is split into four steps. Observe that some details such as database drivers
are left out for clarity.

Listing 4 shows the definitions of our basic Scala classes: User and Car.
These classes will be the values which we want to insert into and fetch from
our database.

Listing 5 shows our Table[T] definitions, where we provide necessary
metadata to query on our user and car objects. Observe that the names
of the members in our standard user and car objects are repeated at least
four times: i) in the case class definition, ii) in the method names in the
table definition, iii) in the string literals to identify the column names in the

10

Listing 6: TableQuery[T] definition

1 val users = TableQuery[Users]
2 val cars = TableQuery[Cars]

Listing 7: Slick queries

1 users
2 // select * from User
3

4 user.map(_.name)
5 // select u.name from User u
6

7 user.filter(_.id === 1)
8 // select * from User where id = 1
9

10 for {
11 user <- users
12 car <- cars if car.ownerId === user.id
13 } yield user.name ++ " drives a " ++ car.name
14 // select concat(u.name, " drives a ", c.name)
15 // from User u, Car c
16 // where u.id = c.id
17

18 for {
19 (u, c) <- user leftJoin cars on (_.ownerId === _.id)
20 } yield (u.name, c.map(_.name))
21 // select u.name, c.name
22 // from User u left out inner join Car c
23 // on u.id = c.id

database, and iv) in the ProvenShape mapping in the ∗ method. In the case
of the ownerId — which has the foreign key constraint — we must repeat
the name two more times, a combined of six times. The benefit to this table
definition is that it gives great flexibility to the user. The downside is that
the table definition forces a lot of boilerplate onto users — violates DRY
— and may be likely to introduce bugs in the code. To alleviate this issue,
Slick provides a library to generate these table definitions from a database
schema.

Listing 6 shows how we create TableQuery objects, which we use to write
queries. Queries are written with a similar syntax as with Scala collections.
Listing 7 shows several examples of Slick queries and their corresponding
translations to (simplified) SQL. Take a moment to appreciate some of the
benefits to writing queries like this: Queries can be type-checked; IDEs can

11

provide auto-completion to the end user; and if a user knows how to operate
on Scala collections the user can write SQL. Once we invoke a map or filter
operation on a TableQuery[T], we get a value of type Query[E, T, C] where
in our example i) E will be Users and Cars, ii) T will be User and Car, and
iii) C will typically be the collections container Seq[T].

Finally, we run our queries on a database object. In Slick 3.0, the ar-
gument supplied to the database object is of type DBIOAction[T] — which
can be created from a slick.ast.Node — and the database returns a val-
ues of type T, which will be User and Car in our case. Observe that the
database object does not work with values of the lifted embedding, that is
slick.lifted.Rep[T]. The lifted embedding is only required to provide the
metadata to create a slick.ast.Node.

3.2 Direct embedding

The value proposition of slick-direct is twofold. Firstly, in slick-direct queries
are written on the original Scala case classes — User and Car in our example
— and, thus, obviates the need for the Table[T] in the second step. Secondly,
because queries are written on the original scala case classes, type signatures
in the Query API are simplified. Besides these two differences, writing queries
in the direct embedding is similar to writing queries in the lifted embedding.

Slick-direct eliminates the need for the Table[T] by extracting neces-
sary metadata from the original case classes. In slick-direct, a class of type
Table[T] is generated during the PreProcessing step described in Sec-
tion 2.1. In our example, the names of the classes and class members mapped
directly into database tables and columns. However, it is possible to use an-
notations to customize the naming translation, as has been done in related
work (see Section 3.3).

It is difficult to understate the benefit for the end user of not having to
provide the Table[T]. First of all, users do not have to learn the Table[T]
API to use Slick. Secondly, the user avoids repeating the same member names
multiple times, which can prevent various kinds of bugs and simplifies refac-
toring as the database model evolves. Finally, users avoid the confusion be-
tween the basic case classes such as User and classes that inherits Table[T]
such as User yet mostly have the same members and look similarly to the
basic classes.

The second benefit to slick-direct is that the type signatures in the Query
API are simplified. Herein, we highlight a few major differences between
the two querying APIs. In all examples, assume the type of this to be
lifted.Query[E, T, _] for direct.Query[T, _], respectively. Listing 8
shows the type signatures for the map operation. In order to guarantee that
f produces a value that can be persisted into a database, lifted.Query adds
an implicit shape parameter on the type of F. Slick-direct eliminates the need
for this shape parameter by restricting the values that can be introduces in

12

Listing 8: Map API

1 // slick.lifted
2 def map[F, G, T](f: E => F)
3 (implicit shape: Shape[_ <: FlatShapeLevel, F, T, G]): Query[G,

T, C]
4 // slick.direct
5 def map[F](f: T => F): Query[F, C]

Listing 9: Filter API

1 // slick.lifted
2 def filter[T <: Rep[_]](f: E => T)(implicit wt:

CanBeQueryCondition[T]): Query[E, U, C]
3 // slick.direct
4 def map[U](f: T => U): Query[U, C]

it’s shallow DSL. If the user introduces an illegal value with f, slick-direct
will return a compilation error that the value is not supported in the DSL.
However, if the value produced is valid in the shallow DSL but does not have
an implicit shape, the user will receive an unexpected implicit missing error
message.

Listing 9 shows the type signatures of the filter operation. In or-
der to guarantee that f produces a value that can be a boolean condi-
tion, lifted.Query adds an implicit CanBeQueryCondition parameter on
the type of T. Slick-direct eliminates the need for this implicit parame-
ter by forcing the method to be of type T => Boolean. The issue with
this elimination is that query conditions on wrapped column types such as
Option[Boolean]cannot be supported.

Listing 10 shows the type signatures of the join operation. This example
may be a bit unfair against lifted.Query, but shows that type signatures in
the lifted embedding can become unwieldy complicated. The type signature
of the equivalent method in slick-direct is undeniably more user-friendly.

Listing 11 shows the type signatures operations on column types. A big
benefit to the slick-direct API is that operations on column types such as
equality of types and concatenation of strings is done with == and +, respec-
tively. As this example exhibits, the lifted embedding requires queries to use
the less widely adopted syntax === and ++ due to constraints of the Scala
language. In fact, using == and + in the lifted embedding will not result in a
compilation error but unexpected behavior instead. The equality will most
likely evaluate to a false boolean literal column and the concatenation oper-
ation will evaluate to a literal string column with the string representation

13

Listing 10: Join API

1 // slick.lifted
2 def joinFull[E1 >: E, E2, U2, D[_], O1, U1, O2](q2: Query[E2, _, D])
3 (implicit ol1: OptionLift[E1, O1],
4 sh1: Shape[FlatShapeLevel, O1, U1, _],
5 ol2: OptionLift[E2, O2],
6 sh2: Shape[FlatShapeLevel, O2, U2, _]):

BaseJoinQuery[O1, O2, U1, U2, C, E1, E2]
7 // slick.direct
8 def joinFull[T2, D[_]](q: Query[T2, D]): BaseJoinQuery[Option[T],

Option[T2], T, T2, C]

Listing 11: Column extension methods API

1 // slick.lifted
2 for {
3 user <- users
4 car <- cars if car.ownerId === user.id
5 } yield user.name ++ " drives a " ++ car.name
6 // slick.direct
7 query {
8 for {
9 user <- users

10 car <- cars if car.ownerId == user.id
11 } yield user.name + " drives a " + car.name
12 }

14

of the runtime memory address of the column values.
One caveat of slick-direct queries, as seen in the previous listing, is that

they need to be wrapped inside a query block. In the previous listing, the
queries for slick-direct have identical shape as the lifted embedding except
that they must passed to the slick-direct query macro. If queries are created
outside a query block they will, as of now, fail with NotImplementedError.
However, it should be possible provide a user friendly message explaining
this peculiar requirement of slick-direct.

Due to time constraint, slick-direct currently only supports 6 categories
of queries. Nevertheless, we consider that we have picked the methods that
offer the strongest proof of concept that the Directembedding approach can
used for Slick. We believe that the remaining methods that are not supported
in our case study could be added to our API with a small additional effort.
All supported queries in slick-direct have a corresponding test suite in the
project’s repository on Gihub, linked at the end of this report. We encourage
the reader to look at the test suites for a more in-depth comparison between
the two APIs.

3.3 Related work

A lot of work has been made to create a simplified Query API to Slick. Most
of this work relies on Scala macros [2], like Directembedding. We cover a few
of these attempts to see how they differ from slick-direct.

The first attempt was made by the Slick team and resulted in a di-
rect embedding API which has now been deprecated and will be removed
in the upcoming 3.1 release of Slick. The approach taken with the di-
rect embedding API differs greatly from our approach in slick-direct. The
Queryable API from the direct embedding implemented a separate macro
for each method and produced values of type ast.Node, obviating the need
for the lifted.Query. Slick-direct, on the other hand, implements one macro
logic for all invocations on our Query API and produces values of type
lifted.Query. Slick-direct does not implement any query logic, it delegates
it to lifted.Query.

Another attempt to simplify the Slick Query API was a made by Amir
Shaikhha [12] using the Yin-Yang Framework [6]. The approach taken in this
second attempt is similar to the approach taken in our case in many ways.
The library implements one macro to reify values in a shallow Query API.
However, this second attempt produced values in a shadow embedding that
operates on values of type lifted.Query at runtime. The main difference
between our case study and this attempt is that Directembedding obviates
the need for the shadow embedding by transforming in one step the values
in the shallow embedding into the deep embedding.

slick-macros [4] is a Scala library to generate boilerplate definitions in
the lifted embedding The library accomplishes this using macro annotations.

15

slick-macros offers an impressive amount of customization options to gen-
erate Table[T] definitions. The library even has an experimental DSL to
configure the database model. However, the library still falls short with two
regards in comparison with slick-direct. Firstly, macro annotations need to
be used in a separate compilation unit from where they are invoked. Sec-
ondly, slick-macros still forces users to write queries on the liffted embed-
ding Query API, which have complicated type signatures as we have seen in
listings above.

4 Future research

There are two areas which require more work. Firstly, it would be interesting
to see more Directembedding case studies on other domains besides slick. It
may be Slick is not the best library to showcase the usefulness of embedding
Deep DSLs. In particular, we are interested to how a deeply embedded DSL
would be designed if Directembedding was kept in mind from the start. A
DSL designed from scratch with Directembedding could give experience on
the usefulness of the @reifyAs — which has limited use in slick-direct —
and also showcase more usage of the new language virtualization feature.
Secondly, although our initial experience with slick-direct is positive, we
believe that the library requires more thorough evaluation to be considered as
a viable alternative to the lifted embedding DSL. In particular, the following
areas need a closer examination:

• The compile method is overloaded with 5 implementations.

• The type-provider for the driver.Table generates a class inside the
query macro, which is redundant, slows down the compilation and in-
troduces unnecessary complexity. It would be welcome to see a solution
that uses the Slick’s standard type providers.

• The ProjectionProcessing class implements a unnecessarily amount
of logic, which might be unnecessary with Slick’s standard type providers.

5 Conclusion

This report presented work on Directembedding, a Scala library to implement
a thin user-friendly layer on top of an existing deeply embedded DSL. We
believe that much progress has been made with the library, in particular with
regards to the library’s architecture and features. Moreover, we are proud to
show our results with slick-direct, which with a very small amount of code
was able to support a large feature set of Slick. However, we consider that
much work is left to be done to the see the real usefulness of Directembed-
ding. These areas, which we believe need more focus, are listed in Section 4.

16

The source code for the Directembedding and slick-direct libraries are freely
available on Github34.

References

[1] Kevin J. Brown et al. “A heterogeneous parallel framework for domain-
specific languages”. In: Parallel Architectures and Compilation Tech-
niques (PACT), 2011 International Conference on. IEEE, 2011, pp. 89–
100. url: http : / / ieeexplore . ieee . org / xpls / abs _ all . jsp ?
arnumber=6113791 (visited on 05/31/2015).

[2] Eugene Burmako. “Scala macros: let our powers combine!: on how rich
syntax and static types work with metaprogramming”. In: Proceedings
of the 4th Workshop on Scala. ACM, 2013, p. 3. url: http://dl.acm.
org/citation.cfm?id=2489840 (visited on 05/31/2015).

[3] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. “Finally tag-
less, partially evaluated: Tagless staged interpreters for simpler typed
languages”. In: Journal of Functional Programming 19.05 (2009), pp. 509–
543. url: http://journals.cambridge.org/abstract_S0956796809007205
(visited on 02/16/2015).

[4] ebiznext. slick-macros. June 2014. url: https://github.com/ebiznext/
slick-macros (visited on 05/31/2015).

[5] Christian Hofer et al. “Polymorphic embedding of DSLs”. In: Proceed-
ings of the 7th international conference on Generative programming
and component engineering. ACM, 2008, pp. 137–148. url: http://
dl.acm.org/citation.cfm?id=1449935 (visited on 05/31/2015).

[6] Vojin Jovanovic et al. “Yin-yang: concealing the deep embedding of
DSLs”. In: Proceedings of the 2014 International Conference on Gen-
erative Programming: Concepts and Experiences-GPCE 2014. ACM
Press, 2014, pp. 73–82. url: http://infoscience.epfl.ch/record/
203432 (visited on 05/31/2015).

[7] Martin Odersky and Matthias Zenger. “Scalable component abstrac-
tions”. In: ACM Sigplan Notices 40.10 (2005), pp. 41–57. url: http:
//dl.acm.org/citation.cfm?id=1094815 (visited on 05/31/2015).

[8] Martin Odersky et al. The Scala language specification. 2004. url:
http://www- dev.scala- lang.org/old/sites/default/files/
linuxsoft_archives/docu/files/ScalaReference.pdf (visited on
05/31/2015).

3https://github.com/directembedding/directembedding
4https://github.com/olafurpg/slick-direct

17

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6113791
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6113791
http://dl.acm.org/citation.cfm?id=2489840
http://dl.acm.org/citation.cfm?id=2489840
http://journals.cambridge.org/abstract_S0956796809007205
https://github.com/ebiznext/slick-macros
https://github.com/ebiznext/slick-macros
http://dl.acm.org/citation.cfm?id=1449935
http://dl.acm.org/citation.cfm?id=1449935
http://infoscience.epfl.ch/record/203432
http://infoscience.epfl.ch/record/203432
http://dl.acm.org/citation.cfm?id=1094815
http://dl.acm.org/citation.cfm?id=1094815
http://www-dev.scala-lang.org/old/sites/default/files/linuxsoft_archives/docu/files/ScalaReference.pdf
http://www-dev.scala-lang.org/old/sites/default/files/linuxsoft_archives/docu/files/ScalaReference.pdf
https://github.com/directembedding/directembedding
https://github.com/olafurpg/slick-direct

[9] Bruno CdS Oliveira, Adriaan Moors, and Martin Odersky. “Type classes
as objects and implicits”. In: ACM Sigplan Notices. Vol. 45. ACM, 2010,
pp. 341–360. url: http://dl.acm.org/citation.cfm?id=1869489
(visited on 05/31/2015).

[10] Tiark Rompf and Martin Odersky. “Lightweight modular staging: a
pragmatic approach to runtime code generation and compiled DSLs”.
In: Communications of the ACM 55.6 (2012), pp. 121–130. url: http:
//dl.acm.org/citation.cfm?id=2184345 (visited on 05/31/2015).

[11] Tiark Rompf et al. “Optimizing data structures in high-level programs:
new directions for extensible compilers based on staging”. In: Acm Sig-
plan Notices. Vol. 48. ACM, 2013, pp. 497–510. url: http://dl.acm.
org/citation.cfm?id=2429128 (visited on 05/31/2015).

[12] Amir Shaikhha. “An Embedded Query Language in Scala”. Master
Thesis. EPFL, Apr. 2014. url: https://github.com/amirsh/master-
thesis (visited on 05/31/2015).

[13] Slick. Apr. 2015. url: http://slick.typesafe.com/ (visited on
05/31/2015).

[14] Josef Svenningsson and Emil Axelsson. “Combining deep and shal-
low embedding for EDSL”. In: Trends in Functional Programming.
Springer, 2013, pp. 21–36. url: http://link.springer.com/chapter/
10.1007/978-3-642-40447-4_2 (visited on 05/31/2015).

18

http://dl.acm.org/citation.cfm?id=1869489
http://dl.acm.org/citation.cfm?id=2184345
http://dl.acm.org/citation.cfm?id=2184345
http://dl.acm.org/citation.cfm?id=2429128
http://dl.acm.org/citation.cfm?id=2429128
https://github.com/amirsh/master-thesis
https://github.com/amirsh/master-thesis
http://slick.typesafe.com/
http://link.springer.com/chapter/10.1007/978-3-642-40447-4_2
http://link.springer.com/chapter/10.1007/978-3-642-40447-4_2

	Introduction
	Directembedding
	Architecture
	Language virtualization
	Overriding predefined and third-party types
	Improved error messages
	Configurable reification
	reifyAs
	reifyAsInvoked
	passThrough
	customLifts
	liftIgnore

	Case study: slick-direct
	Lifted embedding
	Direct embedding
	Related work

	Future research
	Conclusion

